

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm

Module #21
Electrochemistry

FITCH Rules

General	G1: Suzuki is Success G2. Slow me down G3. Scientific Knowledge is Referential G4. Watch out for Red Herrings G5. Chemists are Lazy
Chemistry	C1. It's all about charge C2. Everybody wants to “be like Mike” C3. Size Matters $E_{el} = k \left(\frac{q_1 q_2}{r_1 + r_2} \right)$ or $E_{el} = k \left(\frac{q_1 q_2}{d} \right)$ C4. Still Waters Run Deep C5. Alpha Dogs eat first

Properties and Measurements		
Property	Unit	Reference State
Size	m	size of earth
Volume	cm ³	m
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)
Temperature	°C, K	boiling, freezing of water (specified Pressure)
1.66053873x10 ⁻²⁴ g quantity	amu	(mass of 1C-12 atom)/12
Pressure	atm, mm Hg	earth's atmosphere at sea level
Energy, General	electronic states in atom Electronegativity	Energy of electron in vacuum F
Heat flow measurements	constant pressure, define system vs surroundings per mole basis (intensive)	
Standard Molar Enthalpy	25 °C, 1 atm, from stable state) H _f ^o H _{aq} ⁺ = 0	

We ended our last module considering the two following reactions:

$$2Pb_s + O_{2(g)} \rightarrow 2PbO \quad \Delta G = -355 kJ$$

$$K = e^{\frac{-\Delta G^0}{RT}} = e^{\frac{-(-355 \frac{kJ}{mol})}{(8.314 \times 10^{-3} \frac{kJ}{mol K}) 298 K}}$$

$$K = e^{143} > 127 \times 10^{62}$$

We also had looked up K for the reaction of Fe rusting

K for rusting of Fe = 10²⁶¹

Will these reactions proceed the same way in solution as in air oxidation?

Could we “capture” the energy of these reactions more efficiently than a fire?

Do “bugs” make fires to get their energy?, If not can we mimic them?

**“A” students work
(without solutions manual)
~ 10 problems/night.**

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm

**Module #21
Electrochemistry**

**Some review of relevant
Energy concepts**

**Thermochemistry and work
Free energy and maximum work**

**I WANT YOU
TO PRACTICE
EVERY DAY!**

Chemical reactions involve

1. **heat exchange**

Heat exchange
At constant
Pressure

Constant
Atm. pressure

$Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$

As a review:
who is oxidized?
who is reduced?
what is the oxidation number on H_2 ?
Who is an oxidizing agent?

$q_P = \Delta H$

Subscript
Reminds us that
Pressure is constant

1 atm pressure = constant pressure

Greek: *thalpein* – to heat
en - in
H for (?) heat

This means heat flow, q , is **enthalpy change**

Chemical reactions involve

1. **heat exchange**
2. **work**

$Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$

constant Atm. pressure

**Pressure-
Volume
work**

ΔV

$w = -P\Delta V$

ΔV

H_2 gas plus original atmosphere

(a) (b)

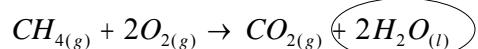
I feel a Noble
Prize coming on

**Maximize work!!!
Solve Global Warming**

**five Navy Avengers
disappeared in the Bermuda
Triangle on Dec. 5, 194**

One possible source of energy
=?=?=?

2



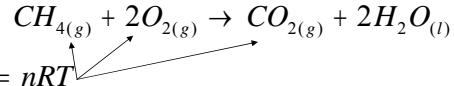
3 to 8 standard cubic feet of biogas per pound of manure. The biogas usually contains 60 to 70% methane.

Methane Gas Recovery At landfills

Consider the contribution of volume change **for water** in this reaction

$$\left[2\text{mole}H_2O_{(l)}\right] * \left[\frac{18\text{g}}{\text{mol}}\right] * \left[\frac{1\text{cm}^3\text{water}}{1\text{gwater}}\right] * \left[\frac{1\text{L}}{10^3\text{cm}^3}\right] = 0.036\text{L}$$

%&\$*! Conversions


$$PV = [1\text{atm}][0.036\text{L}] \frac{0.1013\text{kJ}}{\text{L} \cdot \text{atm}} = 0.0036\text{kJ}$$

Energy in kJ

Most reactions total (q):	~ 1000	kJ
PV 1 mole gas	~ 2.5	kJ
PV 2mole liquid water	~ 0.0036	kJ

Sig fig tells us that PV energy small compared to q

How much PV work occurs for 1 atm constant T burning of methane as a free volume fire?

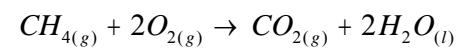
At constant T, 1 atm P:

Work is done by the system on the reaction (compression)

$$P(\Delta V) = (\Delta n)RT$$

$$P(\Delta V) = \left(n_{\text{gas final}} - n_{\text{gas initial}}\right)RT$$

$$P(\Delta V) = (1 - 3\text{moles}) \left(0.0821 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}\right) 298\text{K}$$


$$P(\Delta V) = -48.9316\text{L} \cdot \text{atm}$$

%&\$*! Conversions

$$P(\Delta V) = (-48.9316\text{L} \cdot \text{atm}) \left(\frac{0.1013\text{kJ}}{\text{L} \cdot \text{atm}}\right) = -4.9\text{kJ}$$

2mole change

$$\Delta H = -890\text{kJ}$$

$$w = -\Delta(PV) = -(-4.9\text{kJ} + -0.0036\text{kJ}) = +4.90036\text{kJ}$$

Enclosing the reaction
In a combustion engine
Allows us to capture work

There is a sign change which
Indicates we get to use the work

Total **INTERNAL** energy
Of an isolated system

Enthalpy
Or heat exchange work
Constant P

	ΔE	ΔH	w
Bunsen burner (open)	-885kJ	-890kJ	+5kJ
Automobile engine (closed)	-885kJ	-665kJ	-220kJ
Fuel Cell, theoretical no heat transfer	-885 kJ	-67kJ	-818kJ

Maximum non expansion work at constant pressure and temperature is

$$\Delta G = w_{\text{non,expansion,max,constant}T,P}$$

$$\Delta G_{rx} = \Delta H_{rx} - T\Delta S_{rx}$$

If T or $\Delta S_{rx} = 0$ Then $\Delta G_{rx} = \Delta H_{rx}$

If $T < 0$ or $\Delta S_{rx} < 0$ Then $|\Delta G_{rx}| < |\Delta H_{rx}|$

\uparrow
K does not go below 0
So this is impossible

Maximum work less
Than total internal
energy

$$\Delta H = -890 \text{ kJ} \quad \text{CH}_{4(g)} + 2\text{O}_{2(g)} \rightarrow \text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(l)}$$

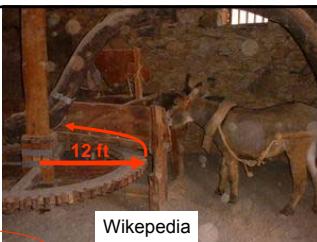
More organized phases
Maximum work less than internal energy because energy used to create a more organized phase

**I WANT YOU
TO PRACTICE
EVERY DAY!**

"A" students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm


**Module #21
Electrochemistry**

Some review of relevant
Energy concepts

Units of energy and work

energy
 $Power = \frac{work}{time} = \frac{force \cdot distance}{time}$

$$d = (2\pi 12 \text{ ft})$$

Wikipedia

$$1hp = (180 \text{ lbs}) \left(\frac{2.4}{\text{minutes}} \right) (2\pi 12 \text{ ft}) = \frac{32,572 \text{ ft lb force}}{\text{min}}$$

$$\left[\frac{32,572 \text{ ft lb force}}{\text{min}} \right] \left[\frac{\text{min}}{60 \text{ s}} \right] = \frac{542.8667 \text{ ft lb f}}{\text{s}}$$

$$\left[\frac{542.8667 \text{ ft lb force}}{\text{s}} \right] \left[\frac{0.3048 \text{ m}}{1 \text{ ft}} \right] \left(\frac{4.44822 \text{ N}}{\text{lbf}} \right) = 745.699 \frac{\text{N m}}{\text{s}} = 745.699 \frac{\text{J}}{\text{s}}$$

$$1hp = 745.699 \frac{\text{J}}{\text{s}}$$

average horse peak $\frac{\text{hp}}{\text{lb}}$
average horse average $< 1 \text{ hp}$

R.D. Stevenson and R. J. Wasserzug
Nature, 364, 195-195, Jul 1993

Properties and Measurements

Property	Unit	Reference State
Size	m	size of earth
Volume	cm^3	m
Weight	gram	mass of 1 cm^3 water at specified Temp (and Pressure)
Temperature	$^{\circ}\text{C}, \text{K}$	boiling, freezing of water (specified Pressure)
1.66053873x 10^{-24} g	amu	(mass of 1C-12 atom)/12
quantity	mole	atomic mass of an element in grams
Pressure	atm, mm Hg	earth's atmosphere at sea level

$$P = \frac{F}{A} = \frac{ma}{A} = \frac{\frac{kg \cdot m}{s^2}}{\frac{m^2}{s^2}} = \frac{kg}{ms}$$

Energy, General

Animal hp
Heat BTU
Gram Calorie

horse on tread mill, 745 J/s
lb water $^{\circ}\text{F}$
g water $^{\circ}\text{C}$

British Thermal Unit (>1700 AD) Energy required to raise one lb of water at its maximum density (39.1 $^{\circ}\text{F}$) 1 $^{\circ}\text{F}$

Energy to raise 1 g of water by 1 $^{\circ}\text{C}$

Kinetic energy Means "defined as"

$$E_k = \frac{1}{2}mv^2$$

$$1 \frac{kg - m^2}{s^2} \equiv 1 J_{oule}$$

2 kg mass moving at 1 m/s

$$E_k = \frac{1}{2}(2kg)\left(\frac{1m}{s}\right)^2$$

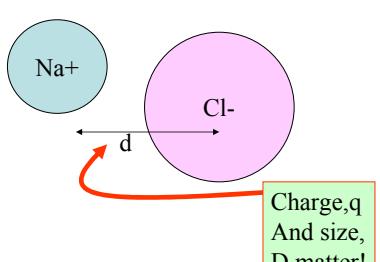
$$E_k = 1 \frac{kg - m^2}{s^2}$$

James Joule (1818-1889)
English Physicist who related Heat energy to animal work (to sell steam engines)

Properties and Measurements		
Property	Unit	Reference State
Size	m	size of earth
Volume	cm ³	m
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)
Temperature	°C, K	boiling, freezing of water (specified Pressure)
1.66053873x10 ⁻²⁴ g quantity	amu	(mass of 1C-12 atom)/12
mole		atomic mass of an element in grams
Pressure	atm, mm Hg	earth's atmosphere at sea level
		$P = \frac{F}{A} = \frac{ma}{A} = \frac{\frac{kg \cdot m}{s^2}}{m^2} = \frac{kg}{m \cdot s}$
Energy, General		
Animal heat	hp BTU calorie	horse on tread mill, 745 J/s 1 lb water 1 °F 1 g water 1 °C
Kinetic	J	2 kg mass moving at 1 m/s
Electrostatic		1 electric charge of 1 coulomb in a 1 V field
$nFV = J$		
Chemistry Rule #1 = it's all about Charge		

J = Work required to move one electric charge of one coulomb through an Electric potential difference of 1 V

$$J = VC$$


$$E_{el} = \left(\frac{kQ_1}{d} \right) Q_2$$

Electric potential, V , Exerted by Q_1 over distance d on the charge Q_2 of object 2

$k = \frac{8.99 \times 10^9 J \cdot m}{(C_{oulomb})^2}$

$$V = \frac{J}{C}$$

Same old, same old, new names

a coulomb is a unit of charge

F = Faraday = 96,485 coulombs of charge/mole of e

$$(n \text{ moles } e) \left(\frac{\text{coulombs}}{\text{mole } e} \right) \left(\frac{\text{Joules}}{\text{Coulomb}} \right) = \text{Joules}$$

$$nFV = J$$

$$-nFV = \Delta G$$

neg sign accounts for negative electron
V directly relates to free energy

Fitch Rule G3: Science is Referential

For standard conditions (1 mole, 1 atm, 25C):

$$-nFV^o = \Delta G^o$$

Language

Komodo (Indonesia) **K**

Greek ΔG $-nFV^o = \Delta G^o = -RT \ln K$

Vamale (Polynesia) **V^o** The Rosetta Stone

Different languages, same information. Represent Total free energy (maximum work) associated with a reaction

"A" students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm

Module #21 Electrochemistry

Some example problems
Relating V, free energy,
And K

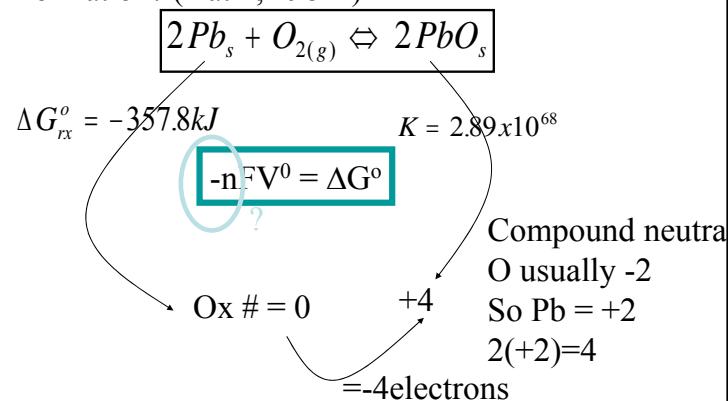
Relationship) G, K, V Example Problem 1 :

What are K and the standard voltage associated with the oxidation of lead given tabulated standard free energies of formation? (1 atm, 298 K)

$$\Delta G_{rx}^o = \left\{ \left(2\text{mol}PbO_s \right) \left(\frac{-187.9\text{kJ}}{\text{mol}PbO} \right) \right\} - \left\{ \left(2\text{mol}Pb_s \right) \left(\frac{0\text{kJ}}{\text{mol}Pb_s} \right) + \left(1\text{mol}O_2 \right) \left(\frac{0\text{kJ}}{\text{mol}O_2} \right) \right\}$$

$$\Delta G_{rx}^o = -357.8\text{kJ}$$

$$\Delta G^o = -RT \ln K$$


$$K = e^{\frac{-\Delta G^o}{RT}}$$

$$K = e^{\frac{-\Delta G^o}{RT}}$$

$$K = 2.89 \times 10^{68}$$

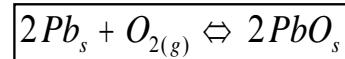
Relationship) G, K, V Example Problem 1 :

What are K and the standard voltage associated with the oxidation of lead given tabulated standard free energies of formation? (1 atm, 298 K)

Relationship) G, K, V Example Problem 1 :

What are K and the standard voltage associated with the oxidation of lead given tabulated standard free energies of formation? (1 atm, 298 K)

$$\Delta G_{rx}^o = -357.8 \text{ kJ}$$


$$K = 2.89 \times 10^{68}$$

$$-nFV^o = \Delta G^o$$

$$n=4$$

$$-nFV^o = \Delta G^o = -357.8$$

$$V^o = \frac{-\Delta G^o}{nF} = \left\{ \frac{-\left(\frac{-357.8 \text{ kJ}}{\text{mol rx as written}} \right) \left(\frac{1000 \text{ J}}{\text{kJ}} \right)}{\left(\frac{4 \text{ mol electrons}}{\text{mol reaction}} \right) \left(\frac{96487 \text{ coulombs}}{\text{mol electron}} \right)} \right\} \left(\frac{1 \text{ V}}{\frac{\text{J}}{\text{coulomb}}} \right) = 0.92 \text{ V}$$

$$\left. \begin{array}{l} \Delta G_{rx}^o = -357.8 \text{ kJ} \\ K = 2.89 \times 10^{68} \\ V^o = 0.92 \text{ V} \end{array} \right\} \text{All tell us that reaction Will spontaneously Proceed to the right Favoring products}$$

So....V>0 is spontaneous

How will we conveniently store info?

What will be the reference point?

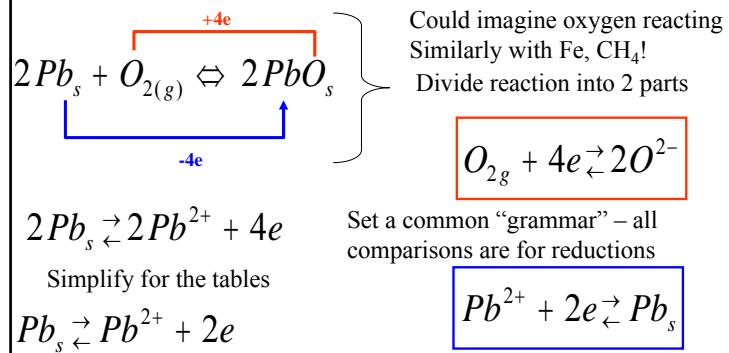
T = boiling water

E of electrons – vacuum, far away from the nucleus etc.

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm


Module #21
Electrochemistry

½ reactions, standard voltages
and
Electrochemical
“cells”

**I WANT YOU
TO PRACTICE
EVERY DAY!**

1. Create a body of reference reactions
2. with a SCALE defined to one reference rx
3. Make an instrument to calibrate or measure the scale.

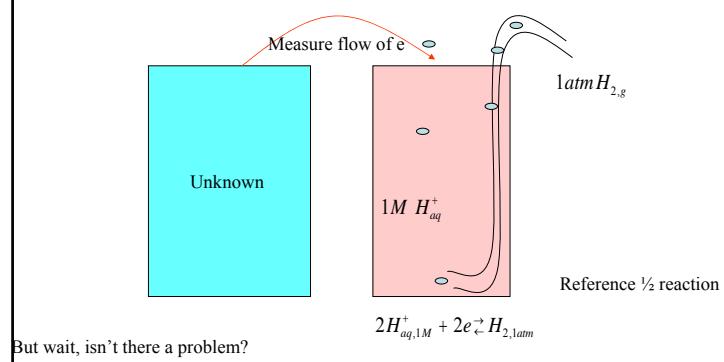
1. What seems to be the “grammar” for the reactions?
2. What is the zero point?
3. What do you expect the value for Cs to be?
4. How do the values for the halogens compare to the group I elements?
5. Is there a trend in the halogens?
6. How does this relate to the periodic chart?
7. How does this relate to “charge density”?
8. Who wants the electrons?
9. Where are the guys that want the electrons located on the chart?

V^o values for 1/2 reactions Compared to protons

Standard conditions
1 atm, 298 K,
1 M or 1 atm

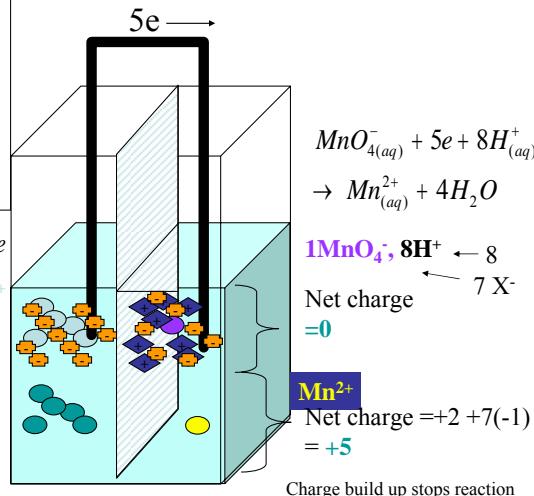
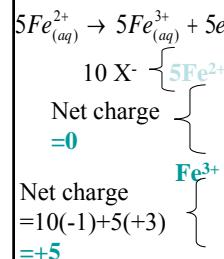
Reaction	V ^o
Cs ⁺ + e → Cs	?
K ⁺ + e → K	-2.95
Na ⁺ + e → Na	-2.71
Fe ²⁺ + 2e → Fe	-0.44
Pb ²⁺ + 2e → Pb	-0.13
2H ⁺ + 2e → H _{2(gas)}	0
Cu ²⁺ + 2e → Cu	0.34
O ₂ + 2H ₂ O + 4e → 4OH ⁻	0.40
O ₂ + 2H ⁺ + 2e → H ₂ O ₂	0.68
Br ₂ + 2e → 2Br ⁻	1.09
Cl ₂ + 2e → 2Cl ⁻	1.36
F ₂ + 2e → 2F ⁻	2.87

“Medicine is the Art of Observation” (ABB, III, M.D.)

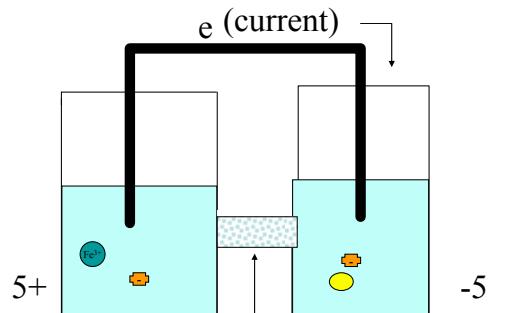

have e want least

V^c V^o < -2.95 (e.g. -3, -4...)

Reaction	don't have e	have e want most	have e want least
Cs ⁺ + e → Cs			?
K ⁺ + e → K			-2.95
Na ⁺ + e → Na			-2.71
Fe ²⁺ + 2e → Fe			-0.44
Pb ²⁺ + 2e → Pb			-0.13
2H ⁺ + 2e → H _{2(gas)}			0
Cu ²⁺ + 2e → Cu			0.34
O ₂ + 2H ₂ O + 4e → 4OH ⁻			0.40
O ₂ + 2H ⁺ + 2e → H ₂ O ₂			0.68
Br ₂ + 2e → 2Br ⁻			1.09
Cl ₂ + 2e → 2Cl ⁻			1.36
F ₂ + 2e → 2F ⁻			2.87



Obeys Rule #2 Everybody Wants to Be Like Mike (get to Group 18 e configuration)

1. Create a body of reference reactions
2. with a SCALE defined to one reference rx
3. **Make an instrument to calibrate or measure the scale.**

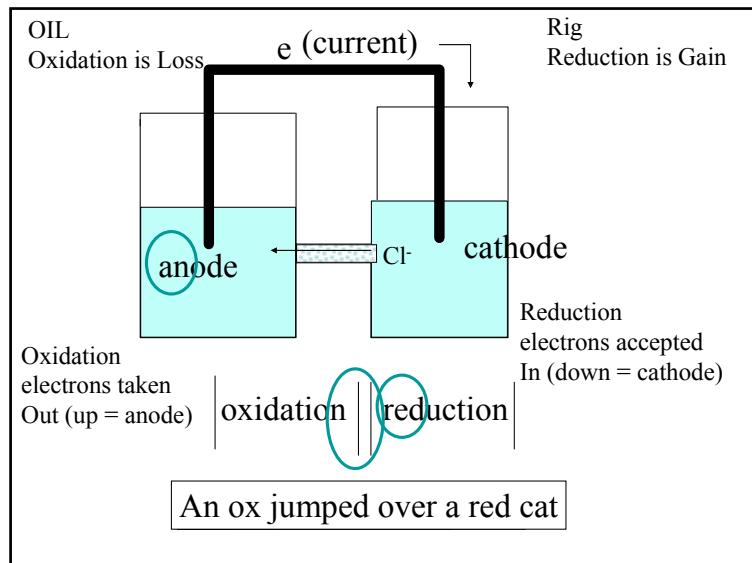


Do you think this reaction will continue for long?

Here's a case where spectator ions are important-solution net neutrality!!!!

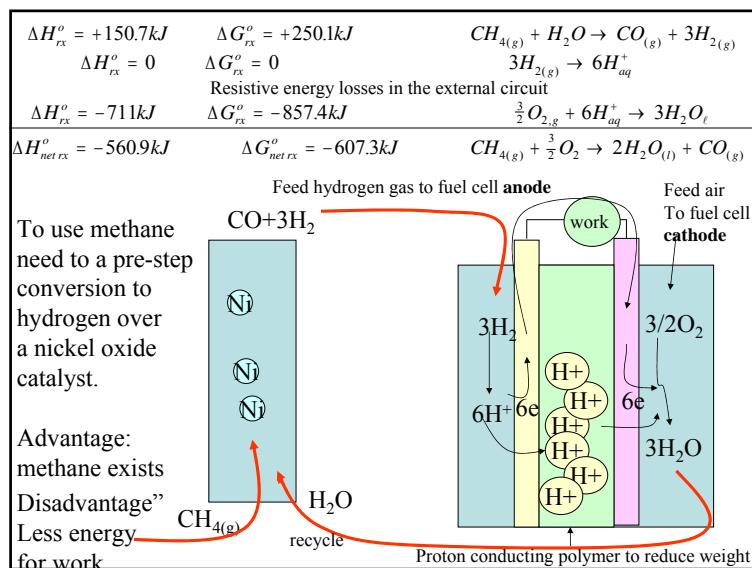
Will want to let spectator ions flow (but not the reactants!)

“jelly” (salt bridge) retards motion of $Fe^{3+/2+}$ MnO_4^-
“jelly” allows motion of spectators which produces Charge balance


Weird Grammar Rules: Those Italians!
Volta discovered this process

1. Always make electrons flow to right
2. Electrons flow down to the cathode (cat = Greek for down).
3. Electrons flow up into the anode (an = Greek for up)

Count Alessandro Volta,
Italy
~1800, first battery



There are 2 kinds of electrochemical (or Voltaic) "cells"

1. Spontaneous (Galvanic) Electrochemical cell (V +; free energy -)
2. Non-spontaneous (re-charging or Electrolytic) (V -; free energy +)

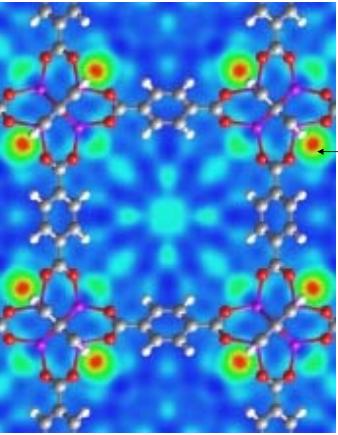
Prez Bush II's 2006 State of the Union The coming of the hydrogen economy

(Considered much more likely by scientists:
Methane based fuel Cell)

Scientific American, Sept 2006 Issue on Energy 2005 – big research Bucks from the public spigot

Hydrogen Economy

1. H₂ production
 1. Coal/gasoline/methane conversion = current cars 150gCO₂/km driven
 1. Need to capture CO₂ and dump and/or reduce
 2. Reduce CO₂
 1. coal/gasoline/methane capture
 2. solar
 3. wind
 4. nuclear
 2. Autos (= ~40% U.S. energy consumption)
 - Proton-exchange membrane – membranes last only ~2,000 <1/2 necessary for car
 - Cost of fuel cells – current cost 1M\$, combustion engine)
 - Storage of H₂ on the car
 - compression/super cooled metal hydride
 - 4. Safety of compressed H₂
 - 5. Timeline – earliest predicted commercialization 20 years


POINT-COUNTERPOINT: VISIONS OF A HYDROGEN ECONOMY

CHEMICAL & Engineering News

HYDROGEN STORAGE

Custom materials for clean power

Green and red are hydrogen gas on an organic lattice to serve as fuel source

<http://www.physorg.com/news11458.html>

"A" students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm

Module #21
Electrochemistry

Using Standard Voltages to predict Spontaneous reactions

Start arrow on right hand side and end on left hand

Have e

Reaction	want least	V°
$\text{Cs}^+ + \text{e}$	Cs	?
$\text{K}^+ + \text{e}$	K	-2.95
$\text{Na}^+ + \text{e}$	Na	-2.71
$\text{Fe}^{2+} + 2\text{e}$	Fe	-0.44
$\text{Pb}^{2+} + 2\text{e}$	Pb	-0.13
$2\text{H}^+ + 2\text{e}$	$\text{H}_{2(\text{gas})}$	0
$\text{Cu}^{2+} + 2\text{e}$	Cu	0.34
$\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}$	4OH^-	0.40
$\text{O}_2 + 2\text{H}^+ + 2\text{e}$	H_2O_2	0.68
$\text{Br}_2 + 2\text{e}$	2Br^-	1.09
$\text{Cl}_2 + 2\text{e}$	2Cl^-	1.36
$\text{F}_2 + 2\text{e}$	2F^-	2.87

Don't have want most

electrons flow down hill away from negative voltage Think of A water tower

Start arrow on right hand side and end on left hand

Uphill reactions: not probable

Reaction		V°
$\text{Cs}^+ + \text{e}$	Cs	?
$\text{K}^+ + \text{e}$	K	-2.95
$\text{Na}^+ + \text{e}$	Na	-2.71
$\text{Fe}^{2+} + 2\text{e}$	Fe	-0.44
$\text{Pb}^{2+} + 2\text{e}$	Pb	-0.13
$2\text{H}^+ + 2\text{e}$	$\text{H}_{2(\text{gas})}$	0
$\text{Cu}^{2+} + 2\text{e}$	Cu	0.34
$\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}$	4OH^-	0.40
$\text{O}_2 + 2\text{H}^+ + 2\text{e}$	H_2O_2	0.68
$\text{Br}_2 + 2\text{e}$	2Br^-	1.09
$\text{Cl}_2 + 2\text{e}$	2Cl^-	1.36
$\text{F}_2 + 2\text{e}$	2F^-	2.87

Start arrow on right hand side and end on left hand

Can I react F_2 with K^+ ?

Reaction		V°
$Cs^+ + e$	Cs	?
$K^+ + e$	K	-2.95
$Na^+ + e$	Na	-2.71
$Fe^{2+} + 2e$	Fe	-0.44
$Pb^{2+} + 2e$	Pb	-0.13
$2H^+ + 2e$	$H_{2(gas)}$	0
$Cu^{2+} + 2e$	Cu	0.34
$O_2 + 2H_2O + 4e$	$4OH^-$	0.40
$O_2 + 2H^+ + 2e$	H_2O_2	0.68
$Br_2 + 2e$	$2Br^-$	1.09
$Cl_2 + 2e$	$2Cl^-$	1.36
$F_2 + 2e$	$2F^-$	2.87

No, there is nobody to give away electrons,
no electron source!

Start arrow on right hand side and end on left hand

Can I exchange e between Cs with Pb?

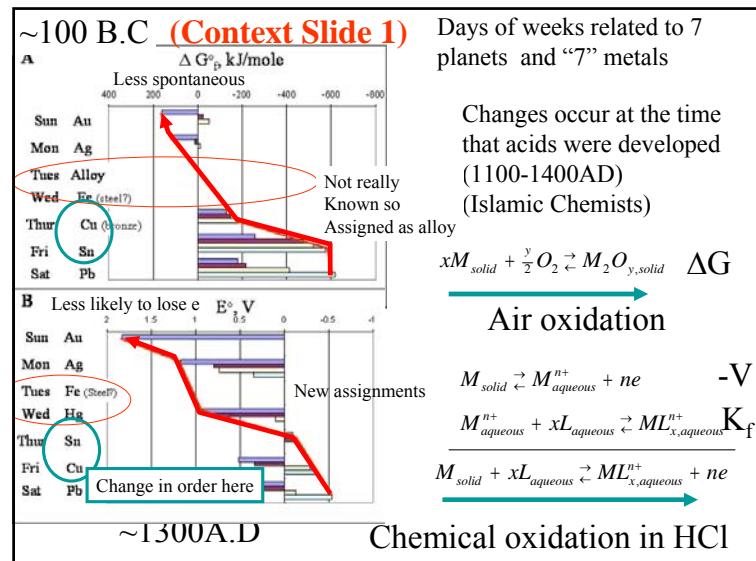
Reaction		V°
$Cs^+ + e$	Cs	?
$K^+ + e$	K	-2.95
$Na^+ + e$	Na	-2.71
$Fe^{2+} + 2e$	Fe	-0.44
$Pb^{2+} + 2e$	Pb	-0.13
$2H^+ + 2e$	$H_{2(gas)}$	0
$Cu^{2+} + 2e$	Cu	0.34
$O_2 + 2H_2O + 4e$	$4OH^-$	0.40
$O_2 + 2H^+ + 2e$	H_2O_2	0.68
$Br_2 + 2e$	$2Br^-$	1.09
$Cl_2 + 2e$	$2Cl^-$	1.36
$F_2 + 2e$	$2F^-$	2.87

There is nobody to accept electrons!

Example problem Standard V (good exam prototypes)

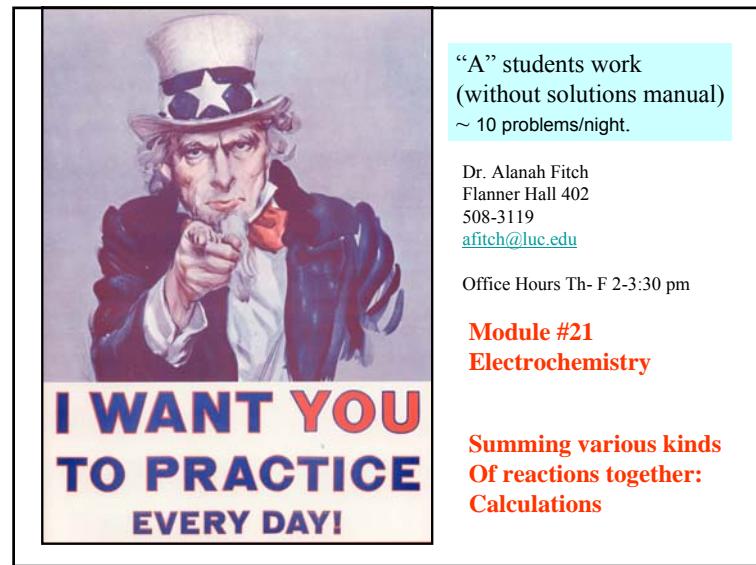
Which reactions will go?

- Cs metal plus KBr ?
- F_2 gas plus $PbCl_2$
- Na metal plus chlorine gas
- $Na^+ + Cl^-$


Strategy:

- Pick one who has electrons
- Pick one who doesn't
- Draw an arrow, starting where the electron is.
- Is it up or downhill?

Reaction		V°	Consider 6 of the 7 earliest known pure elements: Au, Ag, Cu, Pb, Sn, Fe
$K^+ + e$	K	-2.95	
$Na^+ + e$	Na	-2.71	
$NCl_3 + 4H^+ + 6e$	$3Cl^- + NH_4^+$	-1.37	Who rusts (reacts with O_2) more spontaneously?
$Fe^{2+} + 2e$	Fe	-0.44	
$Pb^{2+} + 2e$	Pb	-0.13	
$2H^+ + 2e$	$H_{2(gas)}$	0	
$N_2(g) + 8H^+ + 6e$	$2NH_4^+$	0.275	Why is Au considered sacred or valuable in many cultures across history?
$Cu^{2+} + 2e$	Cu	0.34	
$O_2 + 2H_2O + 4e$	$4OH^-$	0.40	Why was Pb used for plumbing?
$O_2 + 2H^+ + 2e$	H_2O_2	0.68	
$Ag^+ + e$	Ag	0.799	
$NO_3^- + 4H^+ + 3e$	$NO(g) + 2H_2O$	0.957	
$Br_2 + 2e$	$2Br^-$	1.09	
$2NO_3^- + 12H^+ + 10e$	$N_2(g) + 6H_2O$	1.246	
$Cl_2 + 2e$	$2Cl^-$	1.36	
$Au^+ + e$	Au	1.83	
$F_2 + 2e$	$2F^-$	2.87	


Reaction		V°	
$\text{Fe}^{2+} + 2e$	Fe	-0.44	
$\text{Pb}^{2+} + 2e$	Pb	-0.13	Saturday
$2\text{H}^+ + 2e$	$\text{H}_2(\text{gas})$	0	
$\text{Sn}^{4+} + 2e$	Sn^{2+}	0.154	Friday
$\text{N}_2(\text{g}) + 8\text{H}^+ + 6e$	2NH_4^+	0.275	
$\text{Cu}^{2+} + 2e$	Cu	0.34	Thursday
$\text{O}_2 + 2\text{H}_2\text{O} + 4e$	4OH^-	0.40	
$\text{O}_2 + 2\text{H}^+ + 2e$	H_2O_2	0.68	
$\text{Fe}^{+3} + e$	Fe^{2+}	0.769	Tuesday
$\text{Hg}^{2+} + 2e$	$2\text{Hg}(\text{l})$	0.796	Wednesday
$\text{Ag}^+ + e$	Ag	0.799	Monday
$\text{NO}_3^- + 4\text{H}^+ + 3e$	$\text{NO}(\text{g}) + 2\text{H}_2\text{O}$	0.957	
$\text{Br}_2 + 2e$	2Br^-	1.09	
$2\text{NO}_3^- + 12\text{H}^+ + 10e$	$\text{N}_2(\text{g}) + 6\text{H}_2\text{O}$	1.246	
$\text{Cl}_2 + 2e$	2Cl^-	1.36	
$\text{Au}^+ + e$	Au	1.83	Sunday
$\text{F}_2 + 2e$	2F^-	2.87	

Medicine is the Art of Observation

(Context Slide 2)

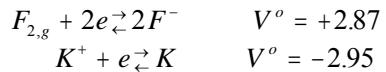
Lead	Tin	Copper	Mercury	Bronze	Silver	Gold
Saturn	Venus	Jupiter	Mercury	Mars	Moon	Sun
Saturday	Friday	Thursday	Wednesday	Tuesday	Monday	Sunday
-0.141	-0.136	0.340	0.7960	variable	0.7991	1.83

Some Rules

1. Voltages sum
2. Reversed reactions = change of sign
3. When summing voltages only don't worry about #electrons (n) since $V = \text{Joule/coulomb}$ of charge
4. To sum a Voltage and a K:
 - a. first convert both to free energy (now worry about # electrons n)
 - b. Sum the free energies
 - c. Convert the summed free energy back to a Voltage (worry about #electrons n here also)

Example Calculation: Summing V equations

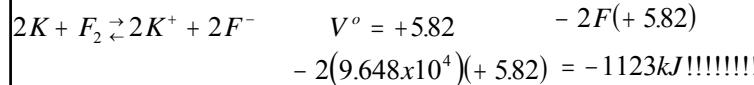
Given that $A + e \rightleftharpoons A^- \quad V_a^o$ Standard V for
 $A^- + e \rightleftharpoons B \quad V_{a/b}^o$ REDUCTION
 $\frac{1}{2}$ reactions


What is the voltage for the reaction:

$$\begin{array}{rcl} A^- \rightleftharpoons A + e & -V_a^o \\ A^- + e \rightleftharpoons B & V_{a/b}^o \\ \hline 2A^- \rightleftharpoons A + B & V = -V_a^o + V_{a/b}^o \\ \text{or} & V = V_{a/b}^o - V_a^o \end{array}$$

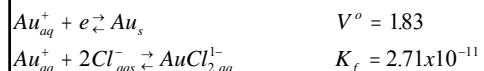
Example Summing V equations: If your lab partner attempts to add fluorine gas to a beaker containing potassium metal what should you do? Justify by calculating the reaction voltage and the free energy

Say your prayers and duck.

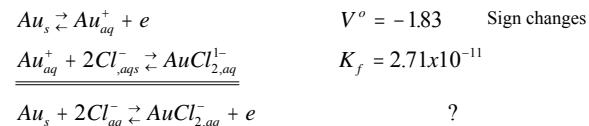


Notice here multiplying does not affect V

Reversal switches sign, tho

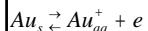


$$\Delta G^o = -nFV^o$$

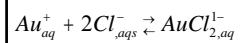

Example Summing Voltages and Ks

We saw that the relative rank for ease of oxidation of metals changed Around 1300 A.D. when technology from the Islamic world was developed that allowed for the production of strong acids. What is the standard potential for the **oxidation** of gold in the presence of 1 M HCl given the following information:

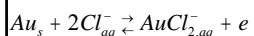
Is gold easier or harder to oxidize in 1 M HCl?


Organize information into one **oxidation** reaction

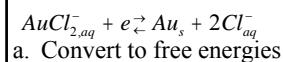
Example Summing Voltages and Ks


What is the standard potential for the **oxidation** of gold in the presence of 1 M HCl? Is gold easier or harder to oxidize in 1 M HCl?

$$-nFV^o = \Delta G^o = -RT \ln K$$


$$V^o = -1.83$$

$$\Delta G^o = +1.77 \times 10^{+5}$$


$$K_f = 2.71 \times 10^{11}$$

$$\Delta G^o = -6.52 \times 10^4$$

$$V_{net}^o = -1.15$$

$$\Delta G_{net}^o = 1.11 \times 10^5$$

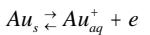
$$1.15$$

Easier to
Oxidize in
Presence of
HCl

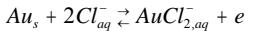
a. Convert to free energies

$$\Delta G^o = -nFV^o = (-1)(96487)(-1.83) = +1.77 \times 10^{+5}$$

$$\Delta G^o = -RT \ln K = -(8.3141)(298) \ln(2.71 \times 10^{11}) = -6.52 \times 10^4$$

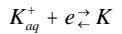

b. Sum

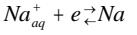
c. Convert to V_{net}


$$V_{net}^o = \frac{1.11 \times 10^{+5}}{-nF} = \frac{1.11 \times 10^{+5}}{-1(96487)} = -1.15$$

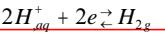
Example Summing Voltages and Ks

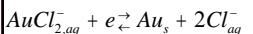
What is the standard potential for the **oxidation** of gold in the presence of 1 M HCl? **Is gold easier or harder to oxidize in 1 M HCl?**


$$V^o = -1.83$$

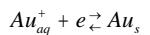

$$-1.15$$

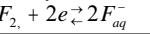
Easier to
Oxidize in
Presence of
HCl


To keep this in the context of our standard $\frac{1}{2}$ reduction reactions we could rewrite


$$-2.95$$

$$-2.71$$


$$0$$


$$1.15$$

$$1.36$$

$$1.83$$

$$2.87$$

Harder to oxidize

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th-F 2-3:30 pm

Module #21
Electrochemistry

Voltage and Concentrations

How does concentration fit In?

$$\Delta G = \Delta G^o + RT \ln Q$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$-nFV = \Delta G \qquad \qquad \Delta G^o = -nFV^o$$

$$-nFV = -nFV^o + RT \ln Q$$

$$\left(\frac{-nFV}{-nF} \right) = \left(\frac{-nFV^o}{-nF} \right) + \left(\frac{RT \ln Q}{-nF} \right)$$

$$V = V^o - \frac{RT}{nF} \ln Q$$

$$V = V^o - \frac{RT}{nF} \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

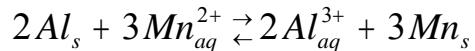
Nernst Equation:

$$V = V^o - \frac{RT}{nF} \ln \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

At 25 °C

$$V = V^o - \frac{0.0592}{n} \log \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

When the reaction favors products, it is Spontaneous, or **Galvanic**


“Frog leg Guy”
1780

Luigi
Galvani:

Fitch Rule G3: Science is Referential

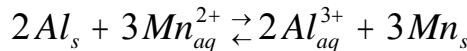
Example Concentration Cell: Calculate the cell potential for a spontaneous (**galvanic**) cell based on the reaction where $[Mn^{2+}] = 0.50 \text{ M}$, $[Al^{3+}] = 1.50 \text{ M}$
At 25 °C, 1 atm

Know

$$V = V^o - \frac{0.0592}{n} \log \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

concentrations

25 °C
1 atm


Don't know

n

V^o

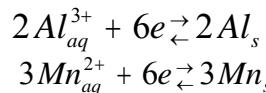
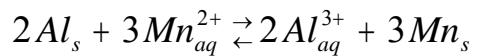
Means we can use tables of standard voltages

Example Concentration Cell: Calculate the cell potential for a spontaneous (**galvanic**) cell based on the reaction where $[Mn^{2+}] = 0.50 \text{ M}$, $[Al^{3+}] = 1.50 \text{ M}$
At 25 °C, 1 atm

Know

$$V = V^o - \frac{0.0592}{n} \log \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

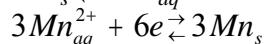

concentrations



25 °C
1 atm

Don't know

$n = 6$

V^o


$$V^o = -1.66 \quad \text{Std grammer}$$

$$V^o = -1.18$$

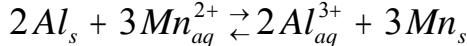
$$V^o = -(-1.66)$$

$$V^o = -1.18$$

+0.48

Calculate the cell potential for a spontaneous (galvanic) cell based on the reaction where $[Mn^{2+}] = 0.50 \text{ M}$
 $[Al^{3+}] = 1.50 \text{ M}$, at 25°C , 1 atm

“A” students work
 (without solutions manual)
 ~ 10 problems/night.


Dr. Alanah Fitch
 Flanner Hall 402
 508-3119
afitch@luc.edu

Office Hours Th-F 2-3:30 pm

Module #21
Electrochemistry

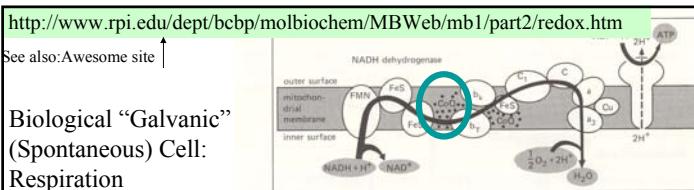
Voltage and Biology

Example Conc. Cell: Calculate the cell potential for a spontaneous (galvanic) cell based on the reaction where $[Mn^{2+}] = 0.50 \text{ M}$, $[Al^{3+}] = 1.50 \text{ M}$ at 25°C .
 1 atm

Know

Don't know

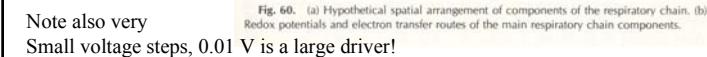
$$V = V^o - \frac{0.0592}{n} \log \frac{[C]^c [D]^d}{[A]^a [B]^b} \quad V = 0.48 - \frac{0.0592}{6} \log \frac{[Al^{3+}]^2}{[Mn^{2+}]^3}$$


concentrations

n=6 $V^o = +0.48$

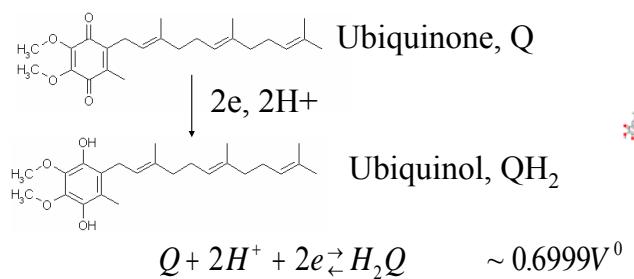
What happened to Al_s and Mn_s ?

$$V = 0.48 - \frac{0.0592}{6} \log \frac{[1.50]^2}{[0.5]^3}$$


$$V = 0.48 - 0.01 = 0.47$$

Note the negative
 To positive
 Arrangement of
 Voltages.

Electrons flow away
 From the
 Negative sign.


Fig. 60. (a) Hypothetical spatial arrangement of components of the respiratory chain. (b) Redox potentials and electron transfer routes of the main respiratory chain components.

Note also very
 Small voltage steps, 0.01 V is a large driver!

CoQ = Coenzyme Q

What is the role of the long tail?

Open browser to see and rotate molecule

<http://www.reciprocalnet.org/recipnet/showsample.jsp?sampleId=27344188&sampleHistoryId=13823>

Biological Electrochemistry Example Calc. 1: What would be the standard potential of the $\frac{1}{2}$ reaction at a physiologically appropriate pH (7.4)?

$$Q + 2H^+ + 2e^- \rightarrow H_2Q \quad \sim 0.6999V^0$$

$$V = 0.6999V^0 - \frac{0.0592}{2} \log \left[\frac{[H_2Q]}{[Q][H^+]^2} \right]$$

$$V = 0.6999V^0 - \frac{0.0592}{2} \log \left[\frac{[1]}{[1][H^+]^2} \right]$$

$$V = 0.6999V^0 + \frac{0.0592}{2} \log [H^+]^2 \quad \text{Sign reversed because of Change in the log term}$$

For standard conditions (1 mole, 1 atm, 25C):

Biological Electrochemistry Example Calc. 1

What would be the standard potential of the $\frac{1}{2}$ reaction at a physiologically appropriate pH (7.4)?

$$V = 0.6999V^0 + \frac{0.0592}{2} \log [H^+]^2 \quad V = 0.2619$$

$$V = 0.6999V^0 + 0.0592 \log [H^+]$$

$$V = 0.6999V^0 + 0.0592 \log [10^{-7.4}]$$

$$V = 0.6999V^0 + (0.0592)(-7.4)$$

$$V = 0.6999V^0 + (-0.43808)$$

Notice that not only Does pH control Structure of proteins It controls the total Energy associated with Many reactions

Which is why we emphasize acid base Chemistry over.

Which is why we emphasize acid base Chemistry over and over.

Which is why we emphasize acid base Chemistry over and over and over.

Biological Electrochemistry Example Calculation 2

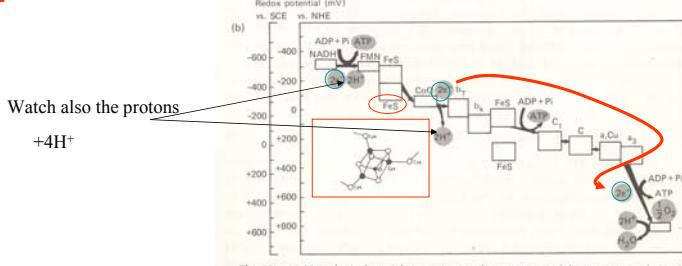
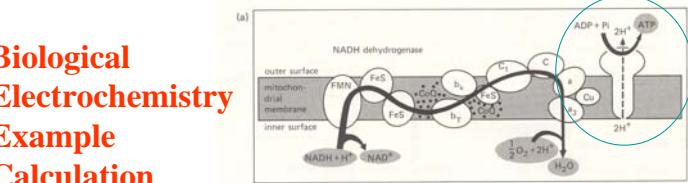
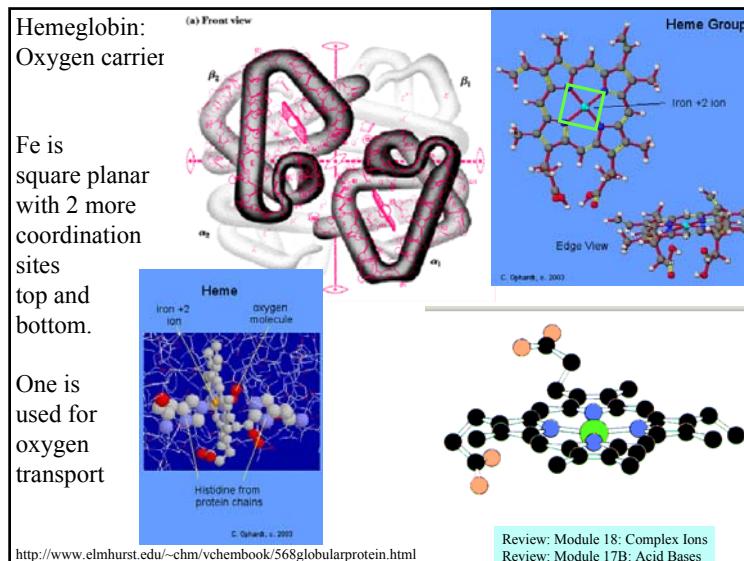
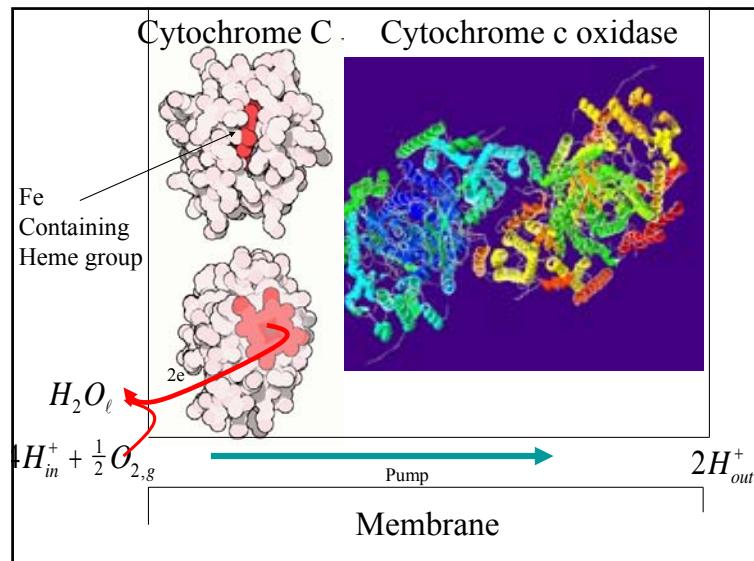
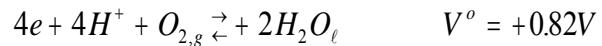
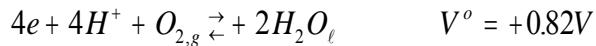
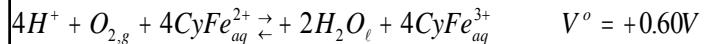
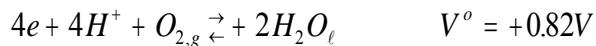






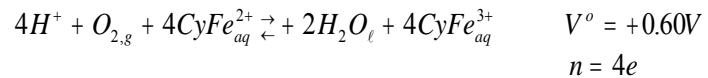
Fig. 60. (a) Hypothetical spatial arrangement of components of the respiratory chain. (b) Redox potentials and electron transfer routes of the main respiratory chain components.



Biological Electrochemistry Example Calc. 2: Cytochrome, $CyFe^{2+}$, reacts with the air we breathe to supply energy required to synthesize adenosine triphosphate (ATP). The body uses ATP as an energy source to drive other reactions. At pH 7.0 the following reduction potentials pertain to this oxidation of $CyFe^{2+}$

- What is ΔG for the oxidation of $CyFe^{2+}$ by air?
- If the synthesis of 1.0 mol of ATP from adenosine diphosphate (ADP) requires a ΔG of 37.7 kJ, how many moles of ATP are synthesized per mole of O_2 ?


Biological Electrochemistry Example Calc. 2: At pH 7.0 the following reduction potentials pertain to this oxidation of $CyFe^{2+}$

a) What is ΔG for the oxidation of $CyFe^{2+}$ by air?

Biological Electrochemistry Example Calc. 2: At pH 7.0 the following reduction potentials pertain to this oxidation of CyFe^{2+}

a) What is ΔG for the oxidation of CyFe^{2+} by air?

$$\Delta G^o = -nFV^o$$

$$\Delta G^o = -4(96485)(0.60) = -231,564\text{J} = -231.6\text{kJ}$$

b) If the synthesis of 1.0 mol of ATP from adenosine diphosphate (ADP) requires a ΔG of 37.7 kJ, how many moles of ATP are synthesized per mole of O_2 ?

$$\left(\frac{1.0\text{molATP}}{37.7\text{kJ}} \right) \left(\frac{-231.6\text{kJ}}{1\text{molO}_2} \right) = \frac{6.15\text{molATP}}{1\text{molO}_2}$$

Biological “Electrolytic” or Non-spontaneous cell:
Photosynthesis

Electrons are “pumped” up towards
More negative voltage

The pump chemistry is Similar (but not identical) to metal ligand crystal Field splitting

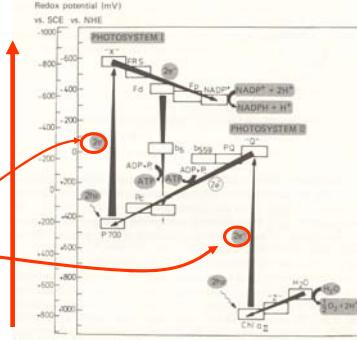
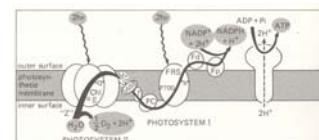
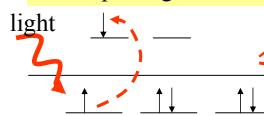
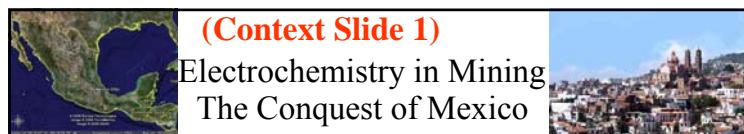




Fig. 6.1. Redox potentials, electron-transfer routes, and principal reactions involved in photosynthesis.


“A” students work
(without solutions manual)
~ 10 problems/night.

Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours W – F 2-3 pm

Module #21 Electrochemistry

Reduction/Oxidation
Reaction Coupled to
Complexation and
Precipitation, more
challenging examples

In 1550 the Viceroy wrote to the King

“In just a few years a large area of forest has been destroyed [near the Taxco silver mines], and it appears that the wood supply will be depleted sooner than the ore. Ordinances have been made regarding the conservation of the forest, and likewise regarding the paths that the Indian workers use for making charcoal, cutting wood, and on the maximum loads that may carry.”

Requires a less fuel
Intensive method

Mercury consumed in New World Spanish silver mines
(1560-1820): 170,000 tons; USA gold rush (1850-1900): 70,000 tons

Amalgamation was introduced in the 1550s in Mexico by a Spanish immigrant, Bartolome de Medina, who wrote Dec. 29, 1555 (1):

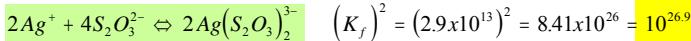
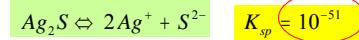
(Context Slide 2)

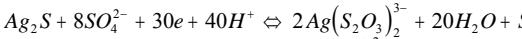
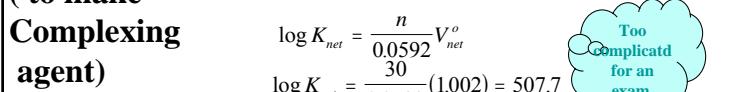
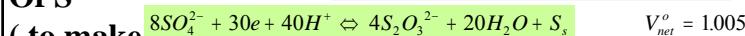
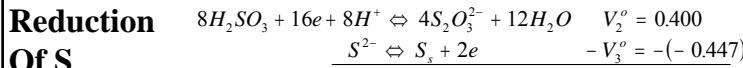
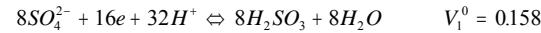
I, Bartolome de Medina do declare that I learned in Spain through discussion with a German, that silver can be extracted from ore without the necessity for smelting it, or refining it, or incurring any other considerable expense. With this information I resolved to come to New Spain. Leaving my home, my wife and my children in Spain, I came to test it, knowing that if I were successful, I would render a great service to Our Lord, and to his Majesty and to all this realm. And having spent much time and money and suffered mental anguish, and seeing that I was not going to be able to make it work, I commanded myself to Our Lady and I begged Her to enlighten me and guide me, so that I might be successful and it pleased Our Lady to enlighten me and put me on the right path so that I could make it work.

Probert, A. Bartolome de Medina: The Patio Process and the Sixteenth Century Silver Crisis. In Mines of Silver and Gold in the Americas.

A description of the process 1555.

Grind the ore fine. Steep it in strong brine. Add mercury and mix thoroughly. Repeat mixing daily for several weeks. Every day take a pinch of ore mud and examine the mercury. See? It is bright and glistening. As times passes, it should darken as silver minerals are decomposed by salt and the silver forms an alloy with mercury. Amalgam is pasty. Wash out the spent ore in water. Retort residual amalgam; mercury is driven off and silver remains.

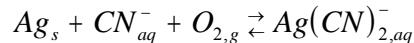


Insoluble

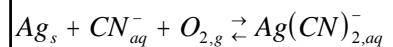





Soluble: driven by oxidation/reduction and complexation

$$K_{total} = K_{net} (K_f)^2 K_{sp} = (10^{507.7})(10^{26.9})(10^{-50.1}) = 10^{484.5}$$

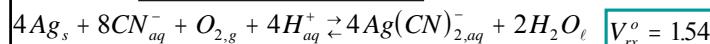
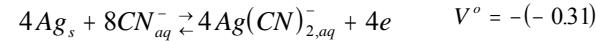
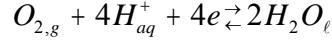
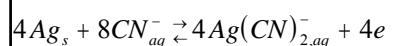
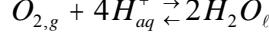
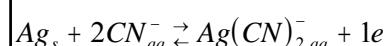
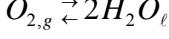
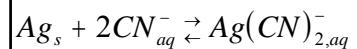
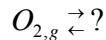
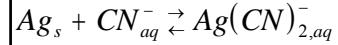
Solubility

Complexation


Too complicated for an exam.


Couple Reactions Example Calculation 1

- Most native silver has long since been used:
- 2. but we still mine silver dust.
- 3. How is this economically feasible?
- 4. How could we get rich with a new process involving CN extraction?











Good for an exam

What is the voltage, free energy, and K Associated with this reaction?

1. Balance the equation
 - a. Split into $\frac{1}{2}$ reactions
 - b. Balance each $\frac{1}{2}$ reaction
 - c. Recombine

The free energy for the reaction is a mere:

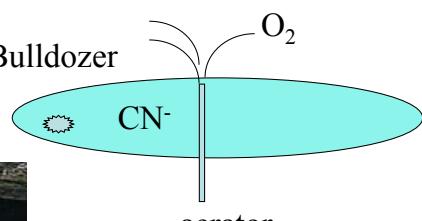
$$\Delta G = -nFV_{rx}^\circ = -4(96485)(1.53) = -5.9 \times 10^5 \text{ J}$$

$$\Delta G = -RT \ln K$$

$$K = e^{(-\Delta G/RT)} = e^{(-590000/(298 \times 8.314))} = e^{238} = 10^{238/2.3} = 10^{103}$$

all you need is:

CN (cheap)


O₂ (air is cheap (an aerator))

Hypothetical Modern Silver/Gold Mine

(Context Slide)

Bulldozer

Same process used to recover silver at photography studios, in silver plating.

Major cyanide spills: Czech, Elbe River, Jan. 2006; Romania, Tisza River, Nov. 2005; Laos, June, 2005; Ghana River Kubreko, Jan, 2005; China, Papua New Guinea, Ghana, **Romania (10 tons Danube River, Mar. 2004)**, Ghana, Honduras, Nicaragua, China, 2002; Nevada, USA

(Context Slide) Using Bugs to Mine Cu from CuS

could be an exam question either math or written one

Biomining for Gold and Copper in Botswana

collect

$K_{sp} = 10^{-36}$ S ox # = -2

$CuS_s + 8Fe^{3+} + 4H_2O \rightarrow 8Fe^{2+} + Cu^{2+} + SO_4^{2-} + 8H^+$

$-2 \text{ to } +6 = -8$
Need 8 e

$8Fe^{2+} \xrightarrow{\text{bugs}} 8Fe^{3+} + 8e$

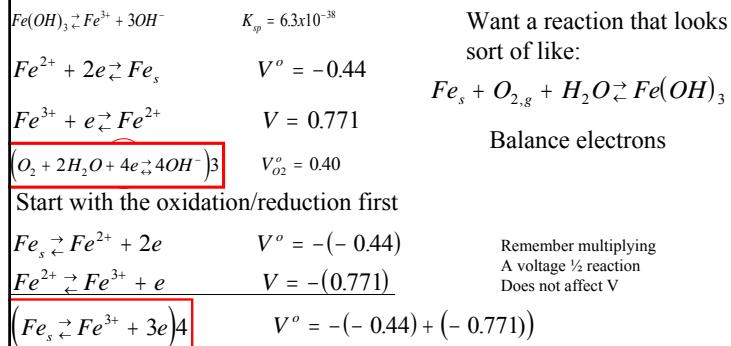
$4x(-2) = -8$
S have to have +6

Catalytic reagent, supplied courtesy of bugs. *Thiobacillus ferrooxidans*

http://www.learner.org/channel/courses/biology/textbook/microb/microb_14.htm

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu


Office Hours Th-F 2-3:30 pm

Module #21
Electrochemistry

Reduction/Oxidation Reactions: Corrosion The Billion \$ Question Or: why your taxes will have To always go up

Coupled Chemical Equation Challenge Calculation 2

Calculate the formal potential for the reaction to form the initial corrosion product, $\text{Fe(OH)}_{3,s}$ reaction at pH 7, 1 atm, 298 K from iron metal and oxygen in the presence of water Given the following information.

Coupled Chemical Equation Challenge Calculation 2

Calculate the formal potential for the reaction to form the initial corrosion product, $\text{Fe(OH)}_{3,s}$ reaction at pH 7, 1 atm, 298 K from iron metal and oxygen in the presence of water Given the following information.

$$\text{Fe(OH)}_3 \rightleftharpoons \text{Fe}^{3+} + 3\text{OH}^- \quad K_{sp} = 6.3 \times 10^{-38}$$

$$-nFV^o = \Delta G^o = -RT \ln K$$

Reverse and quadruple

$$4\text{Fe}^{3+} + 12\text{OH}^- \rightleftharpoons 4\text{Fe(OH)}_3 \quad \left(\frac{1}{K_{sp}}\right)^4 = \left(\frac{1}{6.3 \times 10^{-38}}\right)^4 \quad \Delta G^o = -\left(8.3145 \frac{J}{mol \cdot K}\right)(298K) \ln\left(\frac{1}{6.3 \times 10^{-38}}\right)^4 = -8.49 \times 10^5 J$$

$$3O_2 + 6H_2O + 12e \rightleftharpoons 12OH^- \quad V_{O2}^o = 0.40 \quad -12(9.648 \times 10^4)(0.40) = \Delta G^o = -4.63 \times 10^5 J$$

$$4\text{Fe}_s \rightleftharpoons 4\text{Fe}^{3+} + 12e \quad V^o = -(-0.44) + (-0.771)$$

$$-12(9.648 \times 10^4)(0.441 - 0.771) = \Delta G^o = -3.83 \times 10^5 J$$

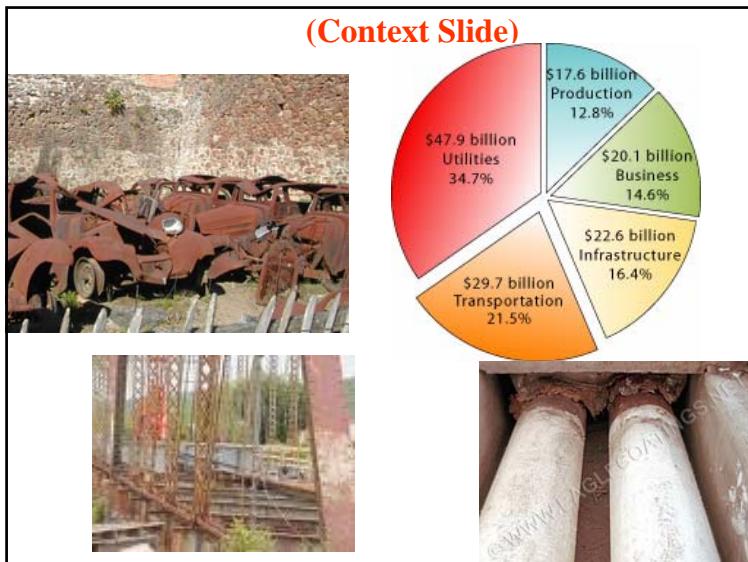
$$4\text{Fe}_s + 3O_{2,g} + 6H_2O \rightleftharpoons 4\text{Fe(OH)}_3 \quad \Delta G_{net} = -1.70 \times 10^6 J$$

Now we have the reaction need total voltage: Use Rosetta Stone

Coupled Chemical Equation Challenge Calculation 2

Calculate the formal potential for the reaction to form the initial corrosion product, $\text{Fe(OH)}_{3,s}$ reaction at pH 7, 1 atm, 298 K from iron metal and oxygen in the presence of water Given the following information.

$$-nFV^o = \Delta G^o = -RT \ln K$$


$$4\text{Fe}^{3+} + 12\text{OH}^- \rightleftharpoons 4\text{Fe(OH)}_3 \quad \left(\frac{1}{K_{sp}}\right)^4 = \left(\frac{1}{6.3 \times 10^{-38}}\right)^4 \quad -8.49 \times 10^5 J$$

$$3O_2 + 6H_2O + 12e \rightleftharpoons 12OH^- \quad V_{O2}^o = 0.40 \quad -4.63 \times 10^5 J$$

$$4\text{Fe}_s \rightleftharpoons 4\text{Fe}^{3+} + 12e \quad V^o = -0.331 \quad -3.83 \times 10^5 J$$

$$4\text{Fe}_s + 3O_{2,g} + 6H_2O \rightleftharpoons 4\text{Fe(OH)}_3 \quad \Delta G_{net} = -1.70 \times 10^6 J$$

Why do we care if this is
 A highly favorable reaction?
 Why use it as an example?

msnbc Home U.S. News Illinois

Sinkhole swallows up SUV in New York
Shocked driver escapes serious injury; vehicle rested on go

Sinkhole Swallows City Maintenance Truck

PORTLAND - A giant sinkhole has opened up in southeast Portland, swallowing a city truck and triggering a natural gas leak.

The incident began Tuesday afternoon when the Portland Office of Transportation responded to a sewer backup on Southeast Oak Street between 18th and 19th avenues.

Crews were attempting to locate a manhole to investigate the problem when the pavement gave way at Southeast 16th and Oak. A city maintenance truck used as a high-pressure sewer cleaning machine fell into the hole, rupturing a gas line.

crawl out of the hole and were 1. One of the workers reportedly

acuated while the natural gas leak lowered to return.

reopened to traffic after being 6th and Oak will remain cordoned off from the massive hole.

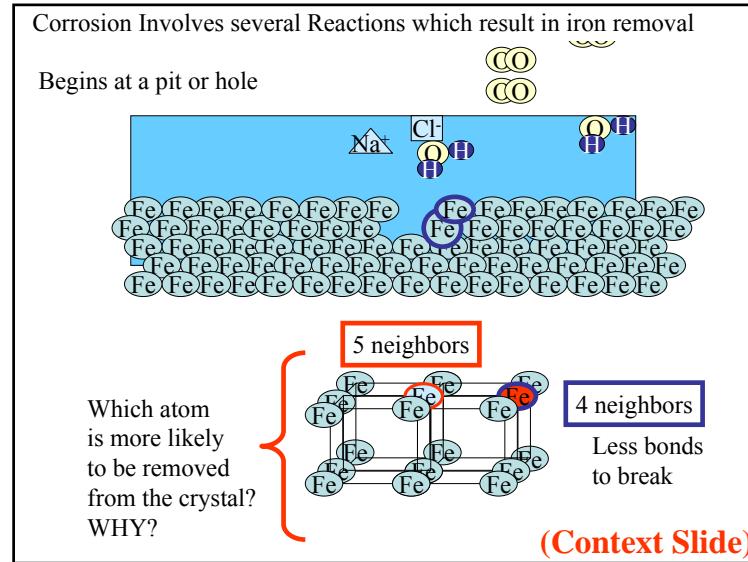
Drinktap.org
The World's Best Place for Water Information

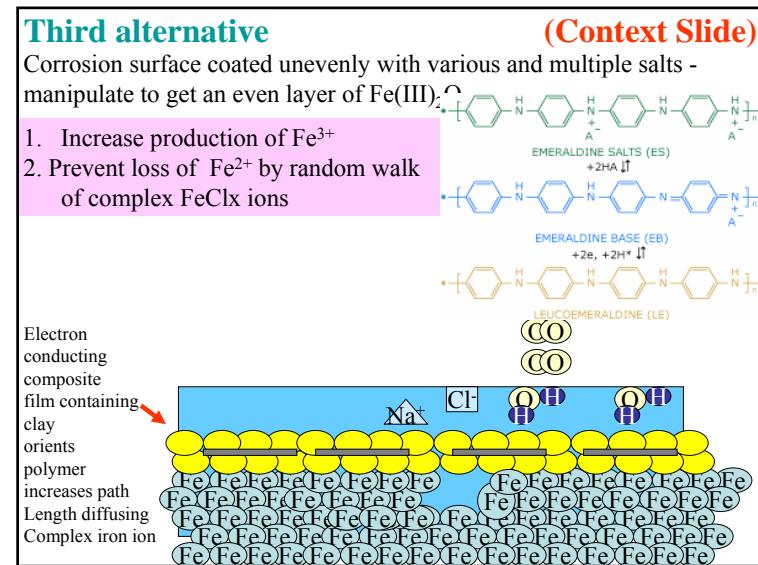
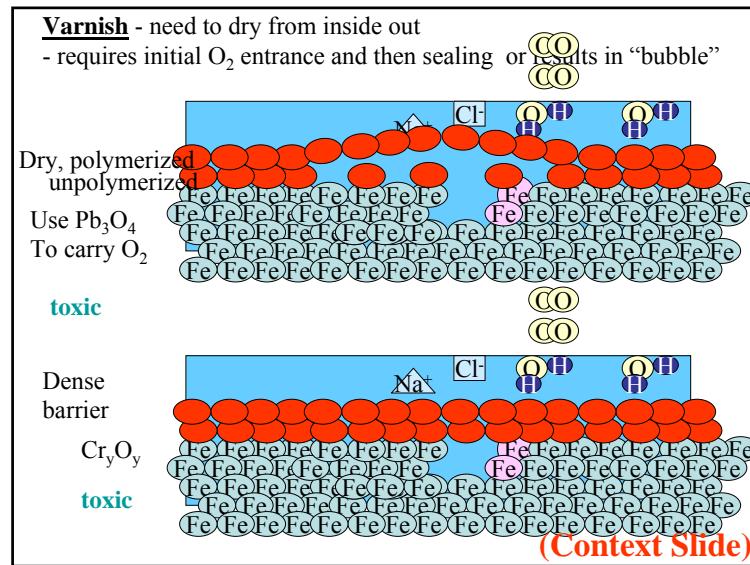
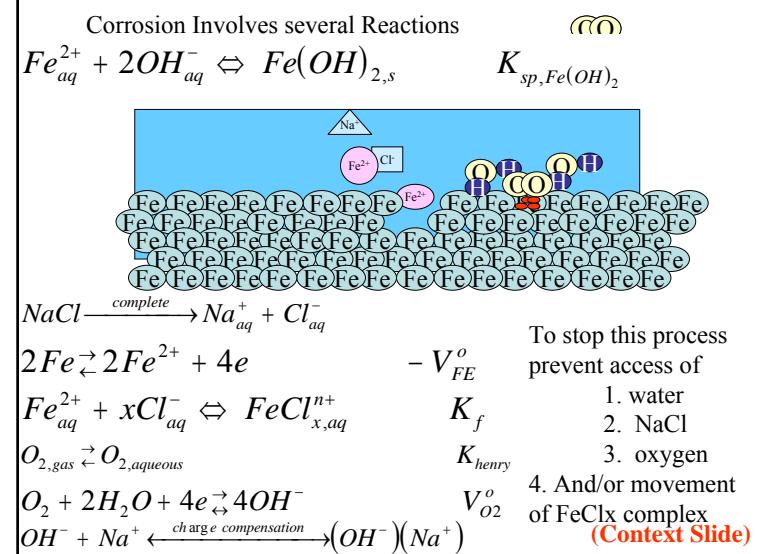
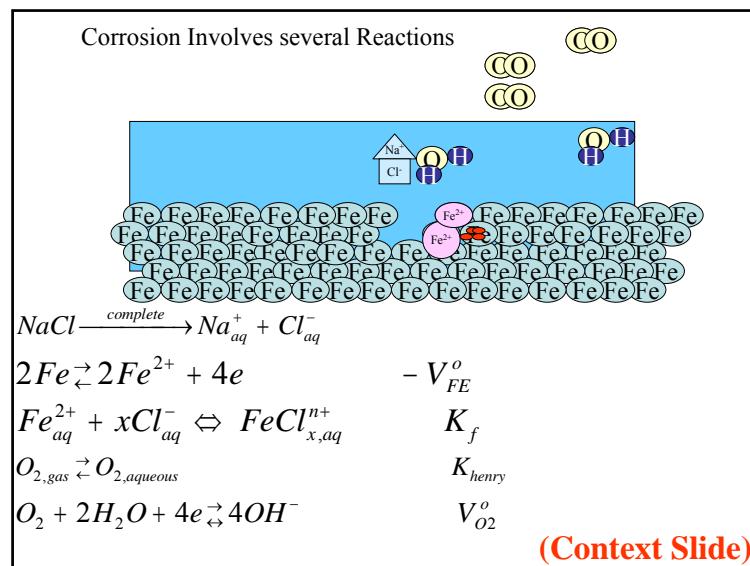
Water Information

Water Infrastructure

Most of the drinking water infrastructure in the United States will need to be replaced in the next three decades. A large portion of water pipes was installed during three periods, and they will all need to be replaced in the next 30 years.

- The oldest cast iron pipes laid in the late 1800s usually last 120 years
- Pipes laid in 1920 will be replaced after 100 years
- Pipes laid in 1960 will be replaced after 75 years

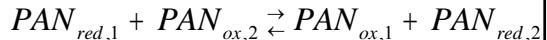
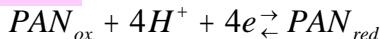

The cost estimates to replace the old pipes range from \$200-\$400 billion. The longer our water infrastructure is out of sight, out of mind, the closer we are to a serious national situation that will require immediate and dramatic funding.





The cost of water

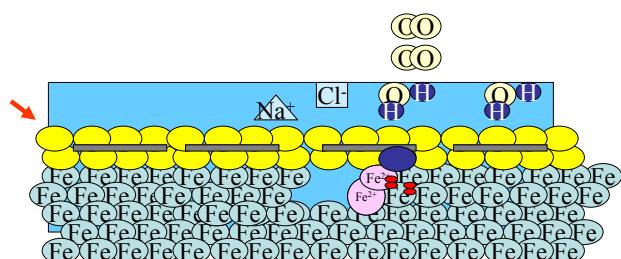
Regardless of when the pipes are replaced, water is going to cost more in the future. And it's an investment worth

Currently estimated that most of the buried pipes (sewer, gas, water) are past their lifespan due to corrosion. 700,000 miles of water lines.

Replacement cost - \$300 Billion



Third alternative

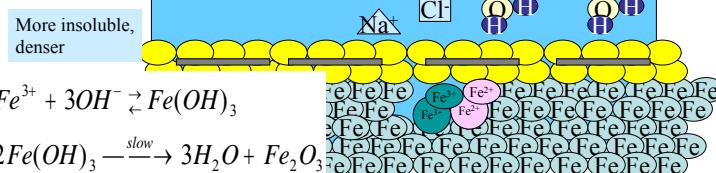
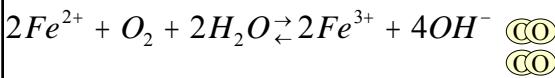
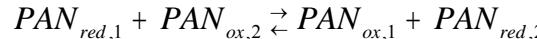
(Context Slide)


Corrosion surface coated unevenly with various and multiple salts - manipulate to get an even layer of Fe_2O_3

1. Increase production of Fe^{3+}

2. Prevent loss of Fe^{2+} by random walk

Electron conducting composite film




Third alternative

(Context Slide)

Corrosion surface coated unevenly with various and multiple salts - manipulate to get an even layer of Fe_2O_3

1. Increase production of Fe^{3+}

2. Prevent loss of Fe^{2+} by random walk

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th- F 2-3:30 pm

Module #21 Electrochemistry

What you should know

1. Balance oxidation/reduction reactions
2. Convert between V, free energy, and K
3. Calculate standard V of a reaction cell from standard $\frac{1}{2}$ reactions
4. Determine if the cell (reaction) is Galvanic (spontaneous) or Electrolytic
5. Calculate V of a reaction at non-standard conditions (change in conc.)
6. Add various electrochemical reactions together (flip reaction change sign)
7. Add various electrochemical and solubility and/or complexation rxns together: This is tricky – need to add in terms of free energy not voltages
8. Be able to explain one example (energy, biological, environmental, corrosion) of electrochemical reactions.