

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14
Kinetics

FITCH Rules

General

G1: Suzuki is Success
G2. Slow me down
G3. Scientific Knowledge is Referential
G4. Watch out for Red Herrings

Chemistry

C1. It's all about charge $E_{el} = k \left(\frac{q_1 q_2}{r_1 + r_2} \right)$
C2. Everybody wants to “be like Mike”
C3. Size Matters
C4. Still Waters Run Deep
C5. Alpha Dogs eat first

Anti-depressants, work to inhibit serotonin uptake

<http://chemfinder.cambridgesoft.com/>

Prozac = fluoxetine Binds to human serum proteins:
Albumin and glycoprotein
Can build up in body; make you dizzy

Effexor = venlafaxine Metabolized rapidly; user must take daily

How do we measure and Report this effect, compare to others?

Wellbutrin=bupropion This one works to inhibit dopamine Reuptake; also metabolized rapidly
Look at structure and explain Longevity in body

Question involves how fast a chemical reaction proceeds

$$aA + bB \xrightarrow{\text{speed}} cC + dD$$

As is usual,
define some sort of standard experimental measurement

Rule G3: Science is Referential

Determine what we need to measure/describe/hold constant

Begin with three “visual” experiments

1. **evaporation of water from a glass from blowing hot air in a desert** Observe water level
2. radioactive decay of polonium
3. $H_2O \xrightarrow{\text{speed}} H_2O_g$
 H_2 formation

Before we start our experiment

Calculate the molarity of water

$$\left(\frac{1\text{g}}{\text{mL}}\right)\left(\frac{1\text{mole}}{1+1+16\text{ g}}\right)\left(\frac{1000\text{mL}}{1\text{L}}\right) = 55.55\text{M}$$

Memorize this Number!!!

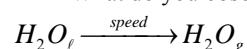
Calculate number of moles/L of 1 atm gas phase

$$PV = nRT \quad \frac{P}{RT} = \frac{n}{V}$$

$$\frac{n}{V} = \frac{1\text{atm}}{\left(0.082 \frac{\text{L} \cdot \text{atm}}{\text{mole} \cdot \text{K}}\right)(25 + 273)}$$

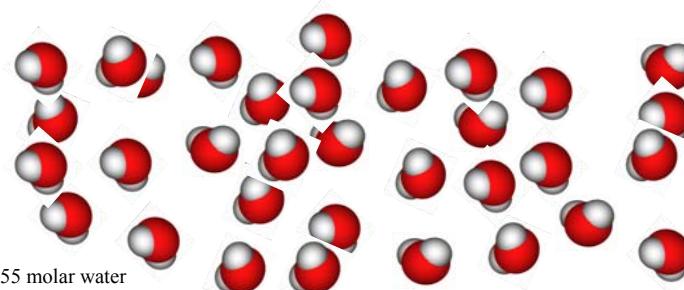
$$\frac{n}{V} = 0.0408 \frac{\text{moles}}{\text{L}}$$

Which one will be easiest to measure
Concentration change?


“A” students work
(without solutions manual)
~ 10 problems/night.

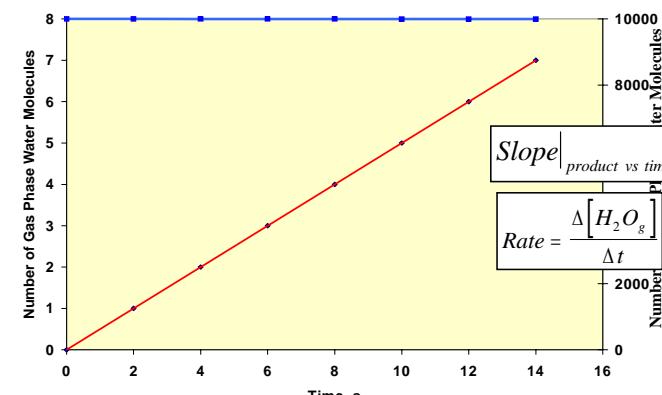
Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th&F 2-3:30 pm

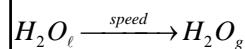

Module #14
Kinetics: Visualization

Visualization What do you observe?

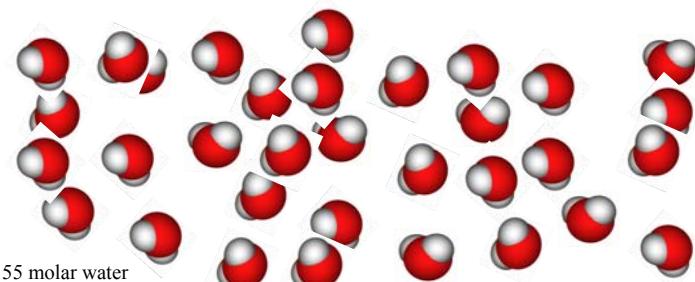
Time, s


Time, s	#escapes
2	1
4	2
6	3
8	4
10	5
12	6

Visualization How should we measure this evaporation of water?

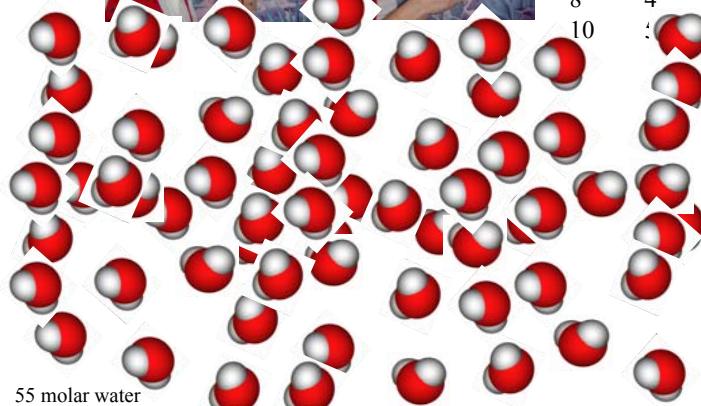

Number of gas phase water molecules vs time?

Number of liquid phase water molecules vs time? **NO change; 55 M**

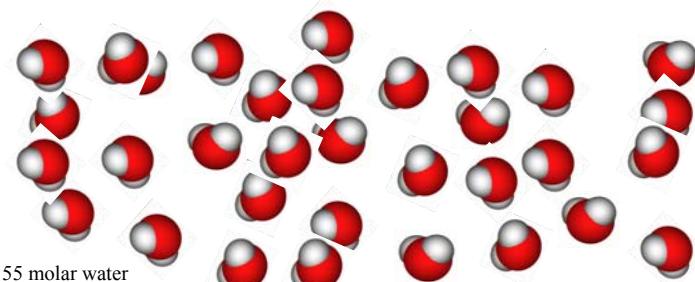
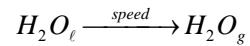


What kind of “measurement” (comparative number should we designate)

Suppose we double the amount of water in the pot?
Will the rate change?

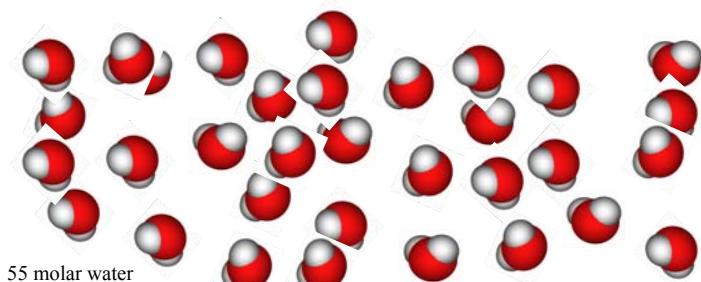

Observe water level

No- rate is controlled by the surface area of the pot!

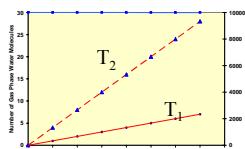
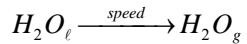


Time, s	#escapes
2	1
4	2
6	3
8	4
10	5

Visualization

Suppose we increase the velocity of the water molecules?


Will the rate change?

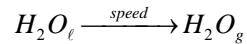
Visualization



What do you observe?

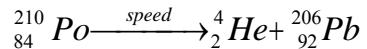
Time, s	#escapes	Time, s	#escapes
Prior experiment		1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	3	6	6
8	4	8	6
10	5	10	5

Visualization

First “visual” experimental results


Slope = time independent

$$\text{Rate} \neq \text{amount of water} \leftrightarrow \text{Rate} \propto [H_2O]^0 = 1$$


$$\text{Rate} \propto k_T$$

Begin with three “visual” experiments

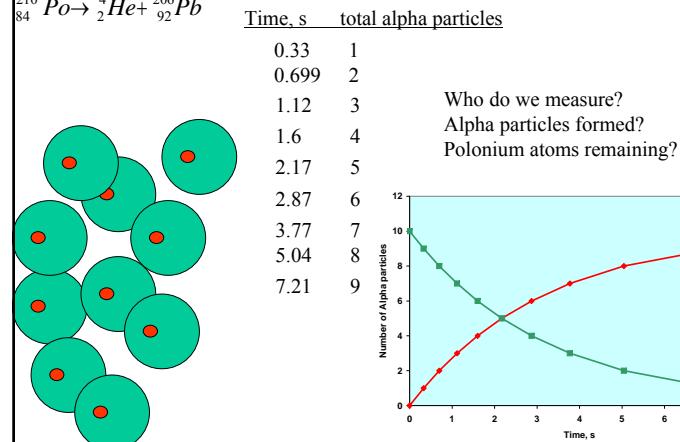
1. evaporation of water

2. radioactive decay of polonium

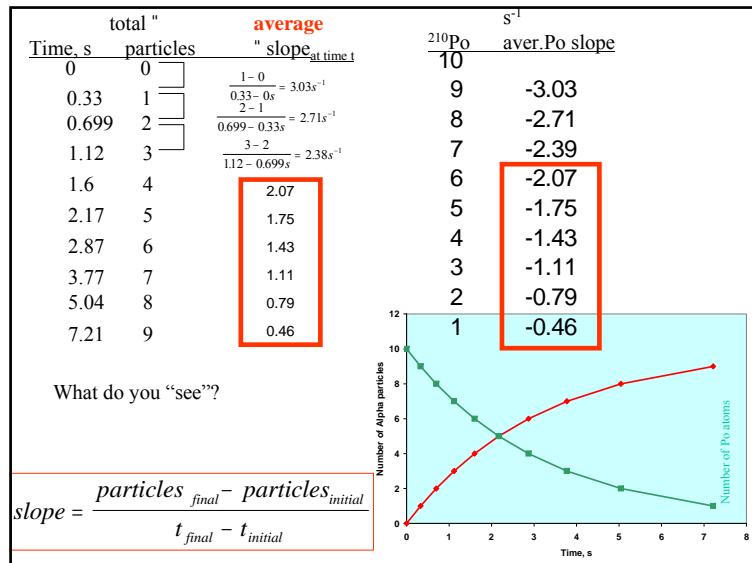
3. H₂ formation

Rule G3: Science is Referential

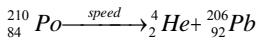
An atom consists of the nucleus with nuclear particles and an electron cloud



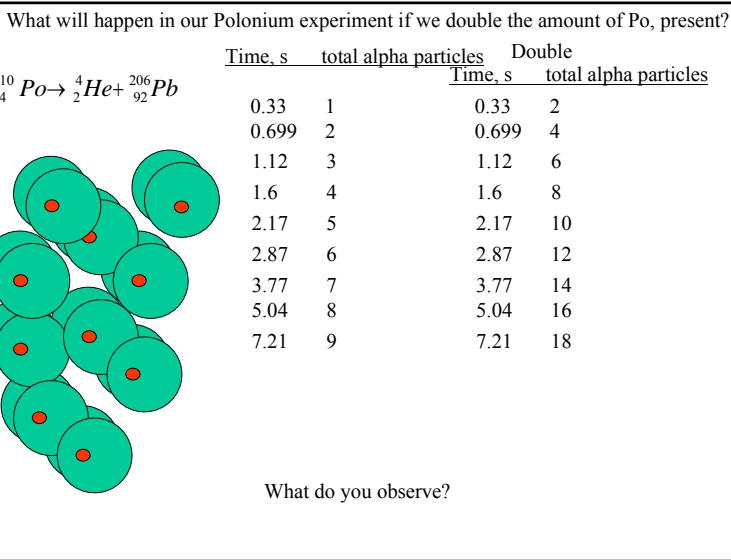
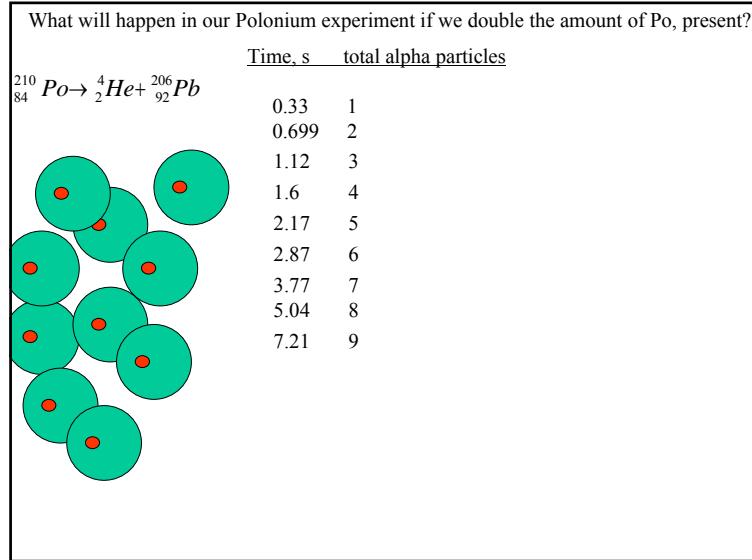
The nuclear particles are held in the nucleus by an energy wall

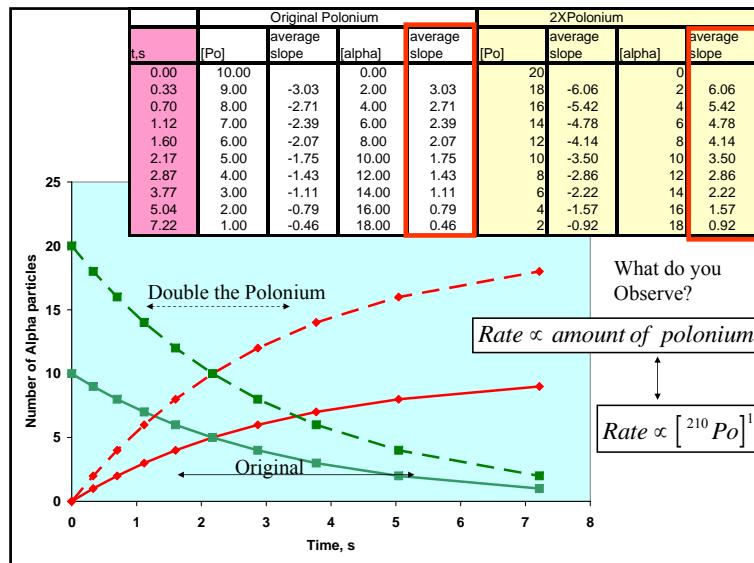

The nuclear particles are moving and tumbling inside the energy barrier

Occasionally, a “tunnel” develops in the energy wall and the particle escapes


The number of times a “tunnel” develops is proportional to the energy of the particle

<http://www.cop.ufl.edu/safezone/prokai/pha5100/radioact.htm>

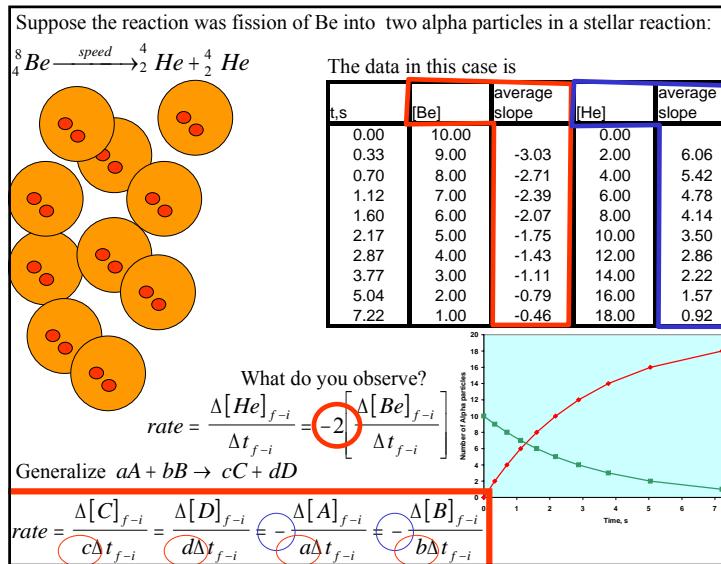
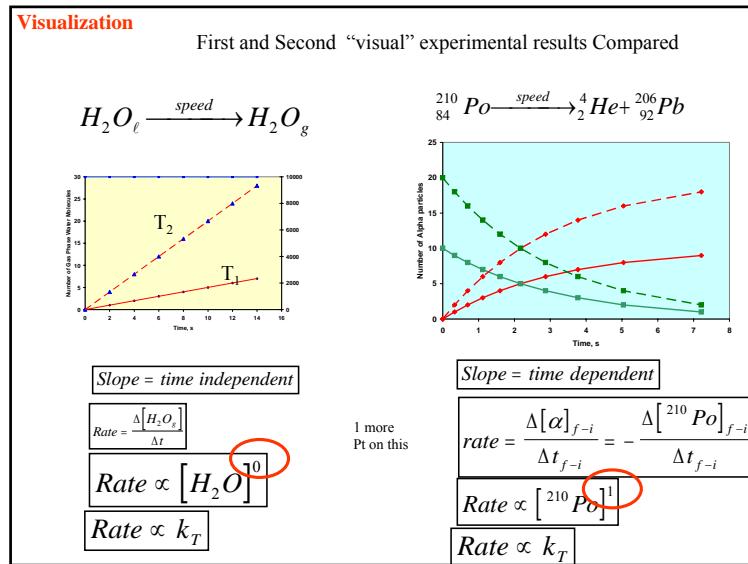


We are considering this reaction



$$\text{slope}_{\text{product}} = \text{rate}_{\text{product}} = \frac{[\text{Product}]_{\text{final}} - [\text{Product}]_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}} = \frac{\Delta[P]_{f-i}}{\Delta t_{f-i}}$$

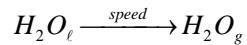
$$\text{slope}_{\text{reactant}} = \text{rate}_{\text{reactant}} = \frac{[\text{Reactant}]_{\text{final}} - [\text{Reactant}]_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}} = \frac{\Delta[R]_{f-i}}{\Delta t_{f-i}}$$

$$\text{rate} = \frac{\Delta[P]_{f-i}}{\Delta t_{f-i}} = -\frac{\Delta[R]_{f-i}}{\Delta t_{f-i}}$$

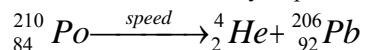



Visualization

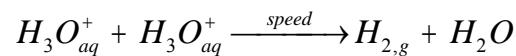
Will alpha particle ejection be the same for all nuclei?

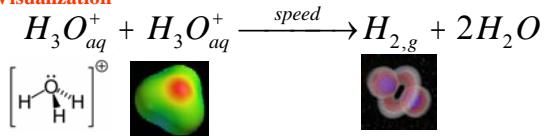

No depends upon collision factors within the nucleus

$$Rate \propto k_T$$



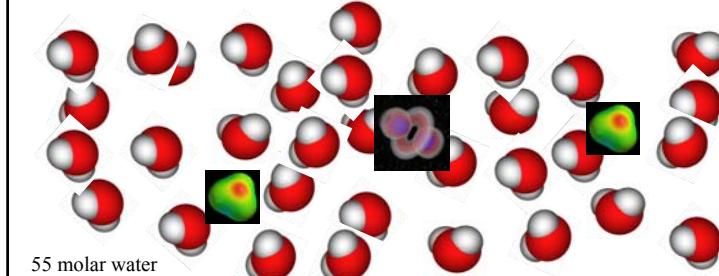
Begin with three “visual” experiments


1. evaporation of water

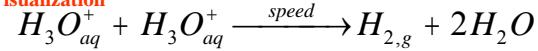

2. radioactive decay of polonium

3. H₂ formation

Visualization


http://www.princeton.edu/~chm333/2002/spring/FuelCells/images/hydrogen_molecule.jpg

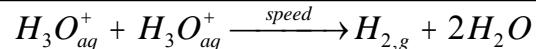
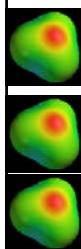
This reaction is very different


Need to get two reactants to collide in order to produce the product

Postulate: rate " collisions,

Collisions " individuals/volume (conc.), velocity in solution

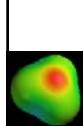
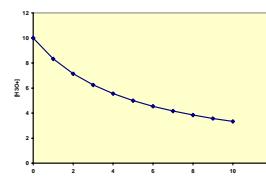
Visualization

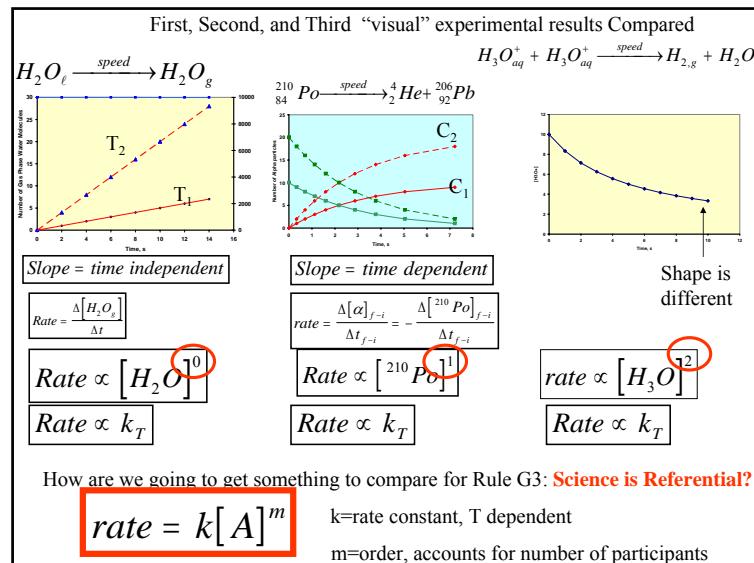



Consider a single molecule colliding with a side

rate \propto collision probability

$$\text{collision probability}_{\text{molecule}1} \propto [\text{molecule}_1]$$

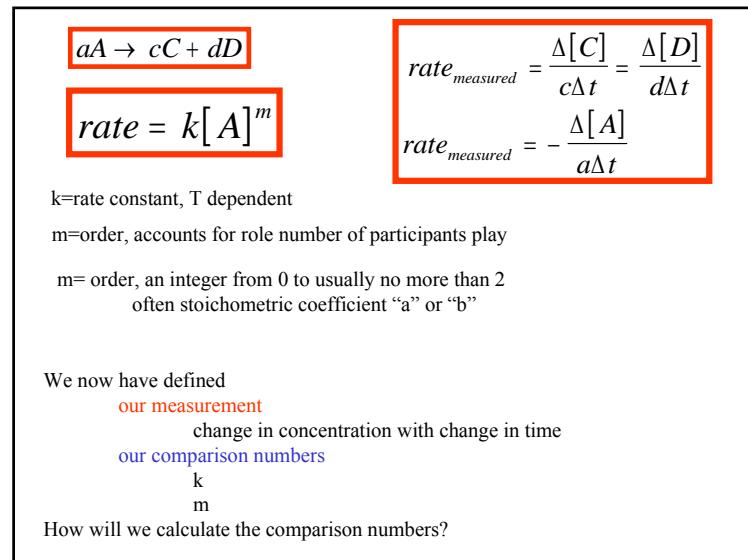
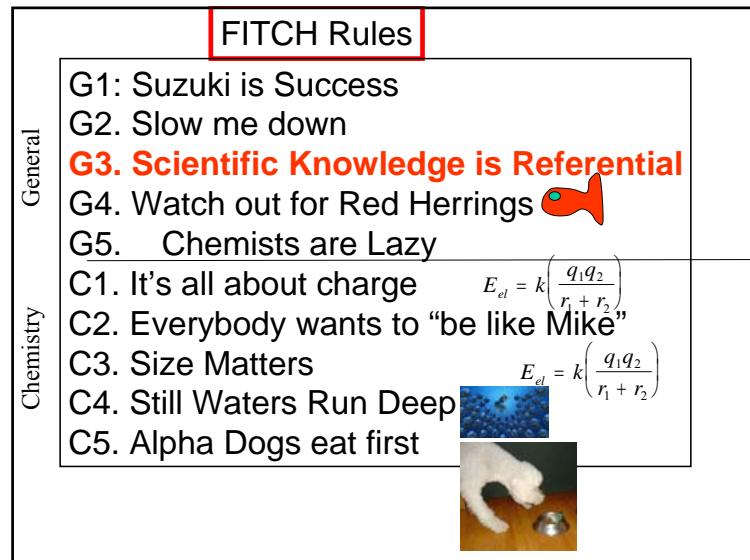


$$\text{collision probability}_{\text{molecule}} \propto \text{velocity}$$



probability of two hitting each other \propto velocity[molecule][molecule]

$$\text{rate} \propto [H_3O]^2$$

$$\text{rate} \propto k_T$$



“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14
Kinetics: end of
“visualizing”

Comparison Numbers:
order

1. Monitor change in conc.
2. Calculate the Rate
- 3. Determine the Order of the reaction**
4. Write the complete rate expression.
5. Calculate the rate constant
6. Calculate the half life
7. Retire to the Bahamas

$$rate_1 = k[A_1]^m$$

$$rate_2 = k[A_2]^m$$

$$\frac{rate_2}{rate_1} = \frac{k[A_2]^m}{k[A_1]^m} = \left(\frac{[A_2]}{[A_1]}\right)^m$$

$$\frac{rate_2}{rate_1} = \left(\frac{[A_2]}{[A_1]}\right)^m$$

$$\log\left(\frac{rate_2}{rate_1}\right) = m \log\left(\frac{[A_2]}{[A_1]}\right)$$

You could also do the following

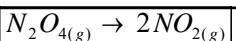
$$\log\left(\frac{rate_2}{rate_1}\right) = m \log\left(\frac{[A_2]}{[A_1]}\right)$$

Look for a concentration

Multiple

For example if we double the conc:

$$\frac{rate_2}{rate_1} = 2^m = 2^0 = 1 \quad rate_1 = rate_2$$

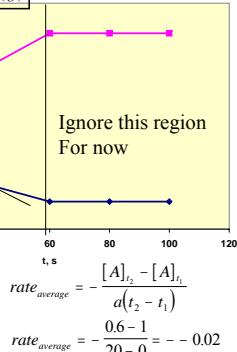

First order

$$\frac{rate_2}{rate_1} = 2^m = 2^1 = 2 \quad rate_2 = 2rate_1$$

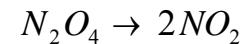
Second order

$$\frac{rate_2}{rate_1} = 2^m = 2^2 = 4 \quad rate_2 = 4rate_1$$

Example Calculation: determine m and k for this reaction



1. Measure concentration vs time
2. Calculate the instantaneous rate or
3. Calculate the average rate
4. Calculate the order


$$\log\left(\frac{rate_2}{rate_1}\right) = m \log\left(\frac{[A_2]}{[A_1]}\right)$$

$$\log\left(\frac{0.02}{0.0125}\right) = m \log\left(\frac{[0.6]}{[0.35]}\right)$$

$$0.204 = m(0.234) \quad \frac{0.204}{0.234} \approx 1 = m$$

1. Measure concentration vs time
2. Calculate the average rate
3. Calculate the order

$$m = 1$$

4. Write the rate expression

$$rate = k[N_2O_4]^1 = k[N_2O_4]$$

5. Calculate the rate constant, using the most convenient data

s	N2O4, atm	average rate	k
0	1		0.02 atm/s
20	0.6	0.02	0.033
40	0.35	0.0125	0.036
60	0.22	0.0065	0.030

What are the sources
Of variability in our
Calculation?

$$\frac{0.02}{(0.6 \text{ atm})} = 0.033 \frac{1}{\text{s}}$$

s	N2O4, atm	NO2, atm
0	1	0
20	0.6	0.8
40	0.35	1.3
60	0.22	1.56
80	0.22	1.56
100	0.22	1.56

s	N2O4, atm	average rate
0	1	
20	0.6	0.02
40	0.35	0.0125
60	0.22	0.0065

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
aftich@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14
Kinetics: end of
“visualizing”

Comparison Numbers:
Half life

Change Calculation to Something
Policy Makers Understand

How long does it take for me to get rid of
½ of the original amount of stuff?

$\frac{1}{2} \text{ life} = t_{1/2}$

Math Phobic
Can sleep through the next 4 slides

Derivation: Half lives

$m=0, 1, \text{ and } 2$

$$-\frac{\Delta [A]}{\Delta t} = k[A]^m \quad \text{Solve for}$$

1. Conc. Vs time
2. time at $\frac{1}{2}$ conc.

$$-\frac{\Delta [A]}{[A]^m} = k\Delta t$$

$$\int -\frac{\Delta [A]}{[A]^m} = \int k\Delta t$$

A day with a derivation is like a day with a bad hair cut

Derivation: Half lives

$$\int \left[-\frac{\Delta[A]}{[A]^m} \right] = \int k\Delta t$$

For m=0

$$\int \left[-\frac{\Delta[A]}{1} \right] = \int k\Delta t$$

$$\int \left[\frac{\Delta[A]}{1} \right] = - \int k\Delta t$$

$$[A]_t - [A]_{t=0} = -kt$$

$$[A]_t = [A]_{t=0} - kt$$

Allow reaction to consume $\frac{1}{2}$ of original

$$\frac{1}{2}[A]_{t=0} = [A]_{t=0} - kt$$

$$\frac{1}{2}[A]_{t=0} = kt_{1/2}$$

$$\frac{[A]_{t=0}}{2k} = t_{1/2}$$

Derivation: Half lives

$$\int \left[-\frac{\Delta[A]}{[A]^m} \right] = \int k\Delta t$$

For m=1

$$\ln[A]_t - \ln[A]_{t=0} = -kt$$

$$\ln\left(\frac{[A]_t}{[A]_{t=0}}\right) = -kt$$

$$\frac{[A]_t}{[A]_{t=0}} = e^{-kt}$$

$$\ln\left(\frac{\frac{1}{2}[A]_{t=0}}{[A]_{t=0}}\right) = -kt$$

$$\ln\left(\frac{1}{2}\right) = -kt_{1/2}$$

$$\frac{-0.693}{-k} = t_{1/2}$$

$$\frac{0.693}{k} = t_{1/2}$$

Derivation: Half lives

$$\int \left[-\frac{\Delta[A]}{[A]^m} \right] = \int k\Delta t$$

For m=2

$$\int \left[-\frac{\Delta[A]}{[A]^2} \right] = \int k\Delta t$$

$$\int -[A]^{-2} dt = -kt$$

$$-\left(\frac{[A]^{-2+1}}{-2+1}\right) = -kt$$

$$\frac{[A]^{-1}}{1} = -kt$$

$$\frac{1}{[A]} = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_{t=0}} = kt$$

Allow reaction to consume $\frac{1}{2}$ of original

$$\frac{1}{\frac{1}{2}[A]_{t=0}} - \frac{1}{[A]_{t=0}} = kt_{1/2}$$

$$2 - 1 = k[A_o]t_{1/2}$$

$$\frac{1}{k[A_o]} = t_{1/2}$$

$aA \rightarrow cC + dD$ rate = $k[A]^m$

Order, m	Rate expression	UNITS OF k	$t_{1/2}$	Concentration vs Time	Example
0	rate = $k[A]$	$\frac{M}{s}$	$t_{1/2} = \frac{[A_o]}{2k}$	$[A]_t = [A]_0 - kt$	$H_2O_2 \rightarrow H_2O + O_2$
1	rate = $k[A]^1$	$\frac{1}{s}$	$t_{1/2} = \frac{0.693}{k}$	$\ln[A]_t = \ln[A]_0 - kt$	$^{210}_{84}Po \rightarrow ^{4}_{2}He + ^{206}_{92}Pb$
2	rate = $k[A]^2$	$\frac{1}{Ms}$	$t_{1/2} = \frac{1}{k[A_o]}$	$\frac{1}{[A]} - \frac{1}{[A_0]} = kt$	$2H_2O_2 \rightarrow H_2O + H_2O$

Units of rate constant vary!!!!

$T_{1/2}$ varies!!!
Conc. Vs Time varies!!!

$$rate_{measured} = \frac{\Delta[C]}{c\Delta t} = \frac{\Delta[D]}{d\Delta t}$$

$$rate_{measured} = -\frac{\Delta[A]}{a\Delta t}$$

Determining Order Example Calculation From the data we have acquired in preceding analysis determine the half life of the reaction

1. Measure concentration vs time
2. Calculate the average rate
3. Calculate the order
4. Write the rate expression
5. Calculate the rate constant, using the most convenient data
6. Calculate the half life

$N_2O_4 \rightarrow 2NO_2$

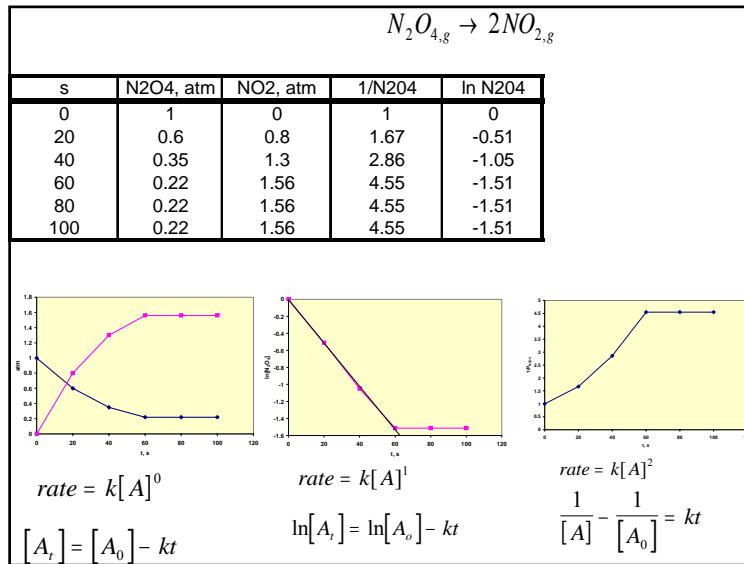
$$m = 1$$

$$\text{rate} = k[N_2O_4]^1$$

$$k = 0.033 \frac{1}{s}$$

For a 1st order $\frac{0.693}{k} = t_{\frac{1}{2}}$

$$t_{\frac{1}{2}} = \frac{0.693}{0.033} \frac{1}{s} = 20.79s$$


7. Testify in front of Congress; retire to Bahamas

Honorable Senator, "Dinitrogen tetroxide half life is 21s."

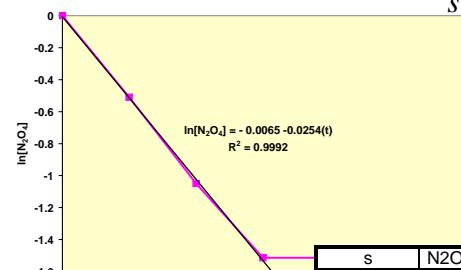
A second method for getting the order, rate constant, and half life

Order, m	Rate expression	UNITS OF k	$t_{\frac{1}{2}}$	Concentration vs Time	Example
0	$\text{rate} = k[A]^0$	$\frac{M}{s}$	$t_{\frac{1}{2}} = \frac{[A_o]}{2k}$	$[A_t] = [A_o] - kt$	$H_2O_4 \rightarrow H_2O_8$
1	$\text{rate} = k[A]^1$	$\frac{1}{s}$	$t_{\frac{1}{2}} = \frac{0.693}{k}$	$\ln[A_t] = \ln[A_o] - kt$	$^{210}_{84}Po \rightarrow ^{4}_{2}He + ^{206}_{92}Pb$
2	$\text{rate} = k[A]^2$	$\frac{1}{Ms}$	$t_{\frac{1}{2}} = \frac{1}{k[A_o]}$	$\frac{1}{[A]} - \frac{1}{[A_o]} = kt$	$2H_2O_{aq} \rightarrow H_{2,g} + H_2O$

As an example calculation use the dinitrogen tetroxide data

1st order reaction

$$rate = k[A]^1$$


$$\ln[A_t] = \ln[A_o] - kt$$

$$\ln P_{N_2O_4,t} = \ln P_{N_2O_4,t=0} - kt$$

$$\ln P_{N_2O_4,t} = \ln(1) - kt$$

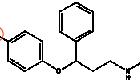
$$\ln P_{N_2O_4,t} = 0 - kt$$

$$k = 0.0254 \frac{1}{s}$$

Which data do you
Think is more
Reliable?

$$k = 0.0254 \frac{1}{s}$$

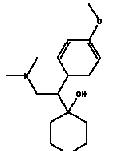
Or the other method


s	N2O4, atm	average rate	k
0	1		
20	0.6	0.02	0.033
40	0.35	0.0125	0.036
60	0.22	0.0065	0.030

Anti-depressants, work to inhibit serotonin uptake

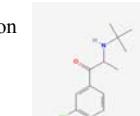
Can now compare molecules by comparing
Their $\frac{1}{2}$ lives

<http://chemfinder.cambridgesoft.com/>


Prozac =
fluoxetine

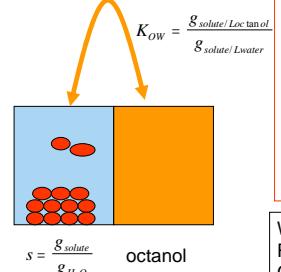
Binds to human serum proteins:
Albumin and glycoprotein

$t_{1/2} = 4-6$ days after chronic dosing


Effexor =
venlafaxine

Metabolized within 1.3 hours from
Plasma (no binding to human serum
Proteins)

$t_{1/2} = 5 \pm 2$ hours


Wellbutrin=bupropion

$t_{1/2} = 20$ hours

Reference Data for Risk Assessment

$$C_g = kP_g$$

for 2 compounds (one
A toxic compound and one a
pharmaceutical

find, listing source of data

S
K_{ow}
K_H

t_{1/2} sediment, soil,
marine water

Find info from REACH and
from US sources on
risk assessment

Written portion of paper should
Relate the structure of the
Compound to the comparison
Numbers via topics such as
a) Intermolecular forces
b) Free radicals (unbonded
electrons)
c) Any additional information
which you find interesting
enough to wow your future
mate in life

Set a reference state to compare all chemicals

solubility in water (s)

solubility between water and octanol (K_{ow})

K_H

t_{1/2} marine water, marine sediment, soils

Your Paper Assignment Important Dates:

1. **Friday Feb. 16** – Finalize and submit names of group (no more than 3)
2. **Monday Mar 12** – submit the three compound names and associated CAS (Chemical Abstract Service) numbers
3. **April 11 Wednesday** – submit the short paper

Paper Style

- 1-2 **typed** pages
2. **Chemical figures** should be obtained from web by screen capture or by download of chemical drawing (e.g. see the NIST site). Hand drawn figures will be given a slight negative marking
3. **Equations** should be typed using word equation editor

Grading Points

20 points total (3.8% of class total)

Failure to turn in paper lowers total class grade by $\frac{1}{2}$ grade point (e.g. A to A-)

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
aftich@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14
Kinetics: example calculation

**I WANT YOU
TO PRACTICE
EVERY DAY!**

Example Calc. 1 - Determine the order, the rate constant, and half life

$$HI \rightarrow \text{products} \quad \boxed{\text{rate} = k[A]^m}$$

<u>T(h)</u>	<u>[HI]</u>
0	1
2	0.5
4	0.33
6	0.25

$$\text{rate}_{\text{measured}} = -\frac{\Delta[A]}{a\Delta t}$$

$$\text{rate}_{\text{measured}} = -\frac{0.5 - 1}{2 - 0} = -\left(\frac{-0.5}{2}\right) = 0.25$$

Example Calc. 1 - Determine the order, the rate constant, and half life

$HI \rightarrow \text{products}$

<u>T(h)</u>	<u>[HI]</u>	<u>Ave. Rate</u>
0	1	
2	0.5	0.25
4	0.33	0.0835
6	0.25	0.04

$\frac{\text{rate}_2}{\text{rate}_1} = 2^m = 2^0 = 1 \quad \text{rate}_1 = \text{rate}_2$

$\frac{\text{rate}_2}{\text{rate}_1} = 2^m = 2^1 = 2 \quad \text{rate}_2 = 2\text{rate}_1$

$\frac{\text{rate}_2}{\text{rate}_1} = 2^m = 2^2 = 4 \quad \text{rate}_2 = 4\text{rate}_1$

$\frac{0.25}{0.04} = 6.25 \quad m > 1$

$\text{guess: } m \approx 2$

$\text{rate} = k[\text{HI}]^2$

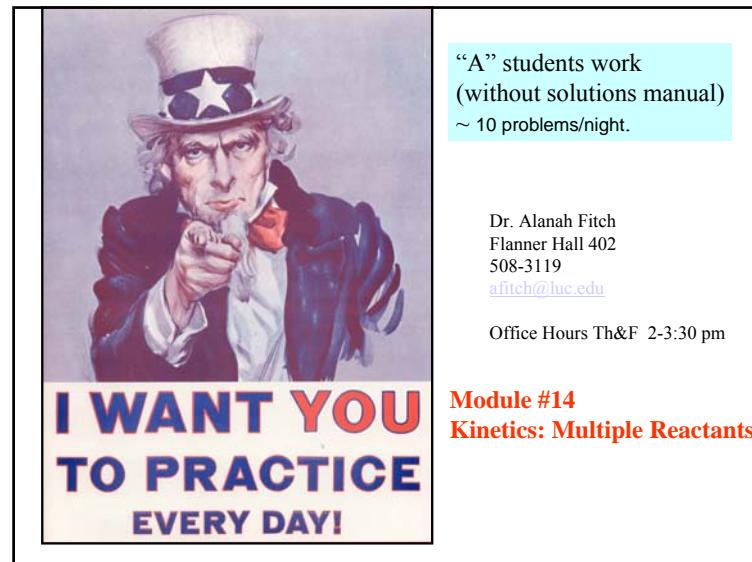
$k = \frac{[\text{HI}]^2}{\text{rate}}$

$k = \frac{[0.5]^2}{0.25} = \frac{1}{M \cdot hr}$

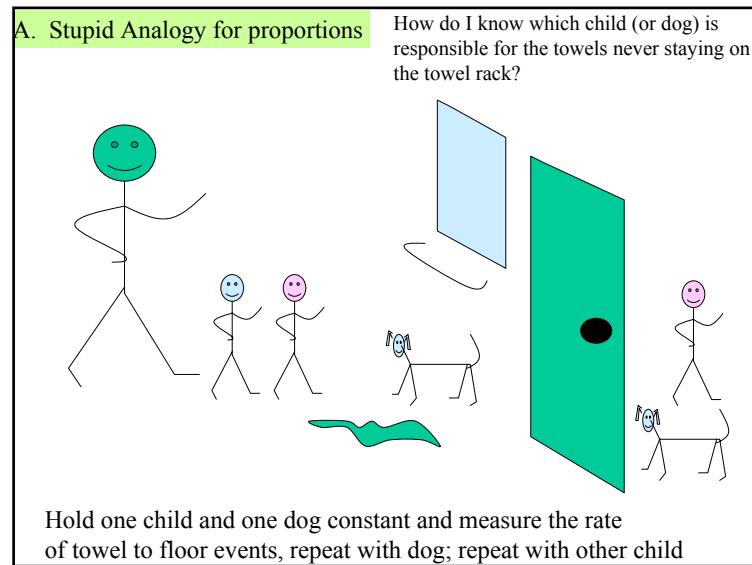
$t_{\frac{1}{2}} = \frac{1}{k[A_o]} \quad t_{\frac{1}{2}} = \left(\frac{1}{\frac{1}{M \cdot hr}}\right)[1M] = 2hr$

Alternative method use the shape of concentration vs time $\boxed{\text{rate} = k[\text{HI}]^2}$

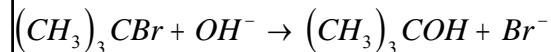
0 order $[A_t] = [A_0] - kt \quad k = \text{slope of appropriate equation}$


1 order $\ln[A_t] = \ln[A_o] - kt \quad \text{slope} = k = \frac{(2 - 1)}{(2 - 0)} = 0.5 \frac{1}{M \cdot hr}$

2 order $\frac{1}{[A]} - \frac{1}{[A_o]} = kt \quad t_{\frac{1}{2}} = \frac{1}{k[A_o]} \quad t_{\frac{1}{2}} = \frac{1}{0.5 \frac{1}{Mhr}[1M]} = 2hr$


<u>T(h)</u>	<u>[HI]</u>	<u>ln[HI]</u>	<u>1/[HI]</u>
0	1	0	1
2	0.5	-0.69	2
4	0.33	-1.1	3
6	0.25	-1.39	4

Which of these makes a straight line function?


Method 1: average rates	Method 2 Concentration Plots
$m \approx 2$	$m = 2$
$rate = k[HI]^2$	$rate = k[HI]^2$
$k = \frac{[0.5]^2}{0.25} = 1$	$slope = k = \frac{(2-1)}{(2-0)} = 0.5 \frac{1}{M \cdot hr}$
$t_{1/2} = \frac{1}{1 \cdot [1M]} = 1hr$	$t_{1/2} = \frac{1}{0.5 \frac{1}{M \cdot hr} [1M]} = 2hr$
Which is better and why? Will it always be better?	

Few reactions are of the form:	$aA \rightarrow \text{products}$	$rate = k[A]^m$	$\log\left(\frac{\text{rate}_1}{\text{rate}_2}\right) = m\log\left(\frac{[A_1]}{[A_2]}\right)$
Most are of the form:			
	$aA + bB \rightarrow \text{products}$	<u>Overall order</u> $= m+n$	
$a \neq m$ $b \neq n$	Ojo	$(CH_3)_3CBBr + OH^- \rightarrow (CH_3)_3COH + Br^-$	$rate = k[(CH_3)_3CBBr]^m[OH^-]^n$
		How can we determine both m and n?	

Example Calculation 2

$$\text{rate} = k[(CH_3)_3 CBr]^m [OH^-]^n$$

[OH ⁻]	[(CH ₃) ₃ CBr]	Rate
0.050M	0.50M	0.005M/s
0.050	1.0	0.01
0.050	1.50	0.015
0.050	2.00	0.02
0.050	1.00	0.01
0.10	1.00	0.01
0.15	1.00	0.01
0.20	1.00	0.01

Divide and Conquer

Make one guy constant and compare rates as other guy varies

$$\log\left(\frac{\text{rate}_1}{\text{rate}_2}\right) = m \log\left(\frac{[A_1]}{[A_2]}\right)$$

$$\log\left(\frac{0.005 \frac{M}{s}}{0.01 \frac{M}{s}}\right) = m \log\left(\frac{0.050M(CH_3)_3 CBr}{1.0M(CH_3)_3 CBr}\right)$$

$$\log(0.5) = m \log(0.5)$$

$m = 1$ order with respect to (CH₃)₃CBr

[OH ⁻]	[(CH ₃) ₃ CBr]	Rate
0.050M	0.50M	0.005M/s
0.050	1.0	0.01
0.050	1.50	0.015
0.050	2.00	0.02
0.050	1.00	0.01
0.10	1.00	0.01
0.15	1.00	0.01
0.20	1.00	0.01

What data will we use to get Order of OH?

[OH ⁻]	[(CH ₃) ₃ CBr]	Rate
0.050M	0.50M	0.005M/s
0.050	1.0	0.01
0.050	1.50	0.015
0.050	2.00	0.02
0.050	1.00	0.01
0.10	1.00	0.01
0.15	1.00	0.01
0.20	1.00	0.01

Study this Hold constant

←

$$\log\left(\frac{\text{rate}_1}{\text{rate}_2}\right) = m \log\left(\frac{[A_1]}{[A_2]}\right)$$

$$\log\left(\frac{0.01 \frac{M}{s}}{0.01 \frac{M}{s}}\right) = m \log\left(\frac{0.050MOH}{1.0MOH}\right)$$

$$\log(1) = m \log(0.5)$$

$$0 = m \log(0.5)$$

$$m = 0$$

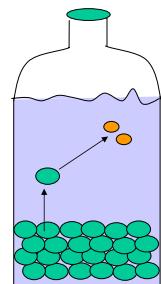
Zero order with respect to OH⁻

[OH ⁻]	[(CH ₃) ₃ CBr]	Rate
0.050M	0.50M	0.005
0.050	1.0	0.01
0.050	1.50	0.015
0.050	2.00	0.02
0.10	1.00	0.01
0.15	1.00	0.01
0.20	1.00	0.01

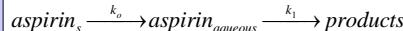
$$0.01 \frac{M}{s} = k(1M)^1 (0.05M)^0$$

Now calculate the rate constant using:

$$0.01 \frac{M}{s} = k(1M)$$


$$k = 0.01 \frac{1}{s}$$

$$\text{rate} = k[(CH_3)_3 CBr]^m [OH^-]^n$$


Which data should we use?

Example Calc. 3. A prescription for a liquid aspirin preparation is called for. It is to contain 6.5 g/100 ml. The solubility of aspirin at 25°C is 0.33 g/100 ml; therefore, the preparation will contain solid aspirin as a suspension which will control the aqueous concentration of aspirin.. The other ingredients in the prescription cause the product to have a pH of 6.0. The first-order rate constant for aqueous aspirin degradation in this solution is $4.5 \times 10^{-6} \text{ sec}^{-1}$. Calculate the zero-order rate constant for the suspension..

Determine the shelf life for the liquid prescription, assuming that the product is satisfactory until the time at which the solid has decomposed to 90% of its original concentration (i.e., 10% decomposition) at 25°C.

1. Draw a mental picture
2. "Translate" into chemistry

Example Calc. 3. A prescription for a liquid aspirin preparation is called for. It is to contain 6.5 g/100 ml. The solubility of aspirin at 25°C is 0.33 g/100 ml; therefore, the preparation will contain solid aspirin as a suspension which will control the aqueous concentration of aspirin.. The other ingredients in the prescription cause the product to have a pH of 6.0. The first-order rate constant for aqueous aspirin degradation in this solution is $4.5 \times 10^{-6} \text{ sec}^{-1}$. Calculate the zero-order rate constant for the suspension..

Determine the shelf life for the liquid prescription, assuming that the product is satisfactory until the time at which the solid has decomposed to 90% of its original concentration (i.e., 10% decomposition) at 25°C.

Know $k_o = 1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}$ Don't Know $t_{10\% \text{ decomposed}} = -0.10[A_o] = -\left(1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}\right)(t_{90\%})$

For zero order reaction

$$[A_t] = [A_0] - kt \quad [A_t] = 0.9[A_0]$$

$$0.9[A_0] = [A_0] - \left(1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}\right)(t_{90\% \text{ remains}})$$

$$0.9[A_0] - [A_0] = -\left(1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}\right)(t_{90\%})$$

$$t_{90\% \text{ remains}} = \frac{-0.10[A_0]}{-1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}}$$

$$t_{90\% \text{ remains}} = \frac{0.10 \left[\frac{6.5 \text{ g aspirin solid}}{100 \text{ mL}} \right]}{1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}}$$

$$t_{90\% \text{ remains}} = 4.3 \times 10^5 \text{ s} = 5.0 \text{ days}$$

Example Calc. 3. A prescription for a liquid aspirin preparation is called for. It is to contain 6.5 g/100 ml. The solubility of aspirin at 25°C is 0.33 g/100 ml; therefore, the preparation will contain solid aspirin as a suspension which will control the aqueous concentration of aspirin.. The other ingredients in the prescription cause the product to have a pH of 6.0. The first-order rate constant for aqueous aspirin degradation in this solution is $4.5 \times 10^{-6} \text{ sec}^{-1}$. Calculate the zero-order rate constant for the suspension..

Determine the shelf life for the liquid prescription, assuming that the product is satisfactory until the time at which the solid has decomposed to 90% of its original concentration (i.e., 10% decomposition) at 25°C.

Know $k_{m=0}$ Don't Know $pH = 6$ Red Herrings?

$$\text{rate} = -\frac{\Delta [\text{Aspirin}_{\text{aq}}]}{\Delta t} = k_{m=1} [\text{Aspirin}_{\text{aq}}] = \frac{4.5 \times 10^{-6}}{\text{s}} [\text{Aspirin}_{\text{aq}}] = \left(\frac{4.5 \times 10^{-6}}{\text{s}}\right) \left(\frac{0.33 \text{ g aspirin}}{100 \text{ mL}}\right)$$

$$K_{\text{solubility}} = \frac{[\text{Aspirin}_{\text{aq}}]}{[\text{Aspirin}_s]} = \frac{[\text{Aspirin}_{\text{aq}}]}{s} = \frac{0.33 \text{ g aspirin}}{100 \text{ mL}} \quad \text{We have just shown that the rate is constant!} \quad \text{That is, a zero order rx!}$$

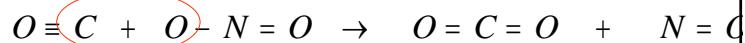
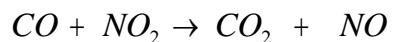
$$\text{rate}_o = k_o = 4.5 \times 10^{-6} \frac{1}{\text{s}} \left[\frac{0.33 \text{ g}}{100 \text{ mL}} \right] = 1.5 \times 10^{-6} \frac{\text{g}}{\text{mL} \cdot \text{s}}$$

"A" students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
aftitch@luc.edu

Office Hours Th&F 2-3:30 pm

**I WANT YOU
TO PRACTICE
EVERY DAY!**

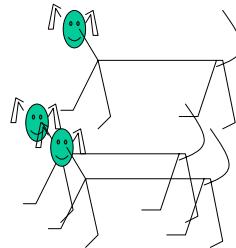
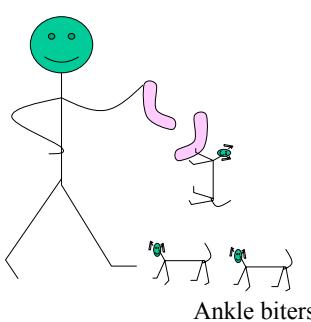


Module #14
Kinetics: Activation Energy

A CLOSER LOOK AT RATES

Rate should be proportional to SUCCESSFUL collisions

1. Number of collisions
 1. Concentration increases collisions
 2. Velocity increases number of collisions per time, Z
2. Successful collisions
 1. With sufficient energy to break the bonds (~ 200 kJ) f_{Energy}
 2. **With appropriate orientation, P**

$$k = PZf_{Energy}$$



No reaction because C is not oriented toward the oxygen

Orientation matters

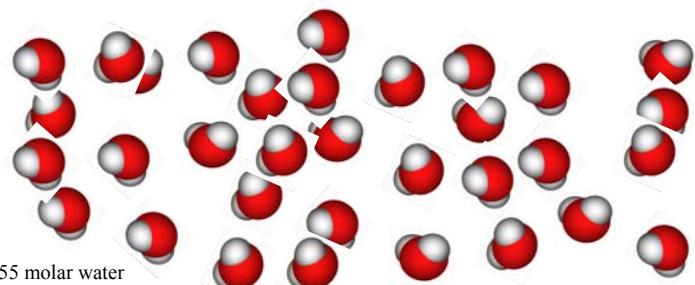
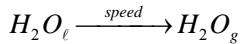
A. Stupid Analogy

How fast can a sock go from a human to a dog?

Will depend upon the type of dogs and their ability to have successful collisions!!!

A CLOSER LOOK AT RATES

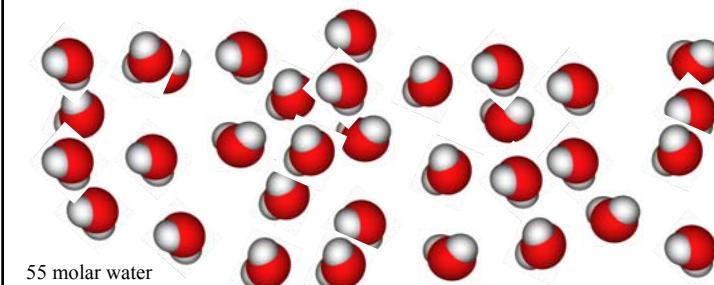
Rate should be proportional to SUCCESSFUL collisions



1. Number of collisions
 1. Concentration increases collisions
 2. **Velocity increases number of collisions per time, Z**
- Successful collisions
 - With sufficient energy to break the bonds (~ 200 kJ) f_{Energy}
 - With appropriate orientation, P

$$k = PZf_{Energy}$$

Visualization

Suppose we increase the velocity of the water molecules?


Will the rate change?

Visualization

What do you observe?

		Time, s	#escapes
H_2O_{ℓ}	$\xrightarrow{\text{speed}} H_2O_g$	1	1
Prior experiment		2	2
Time, s	#escapes	3	3
2	1	4	4
4	2	5	5
6	3	6	6
8	4		
10	5		

Derivation

From earlier chapter we learned gas phase velocities

$$u_{rms} = \sqrt{\frac{3kT}{g_{molecule}}}$$

Notice how this function shows up in the number of collisions of molecule A and B per cm^3 in 1s

$$Z_{AB} = \rho^2 n_A n_B \sqrt{8\pi \left(\frac{kT}{g_{molecule, A}} \right) + 8\pi \left(\frac{kT}{g_{molecule, B}} \right)}$$

Number of molecules per cm^3

Related to distance between molecules that results in a collision, usually 2 to 3 Å

$$k = P \left[\rho^2 n_A n_B \sqrt{8\pi \left(\frac{kt}{g_{molecule, A}} \right) + 8\pi \left(\frac{kt}{g_{molecule, B}} \right)} \right] f_{Energy}$$

From earlier chapter we learned of kinetic energy:

Maxwell's Distribution

$$E_k = \frac{1}{2} mv^2$$

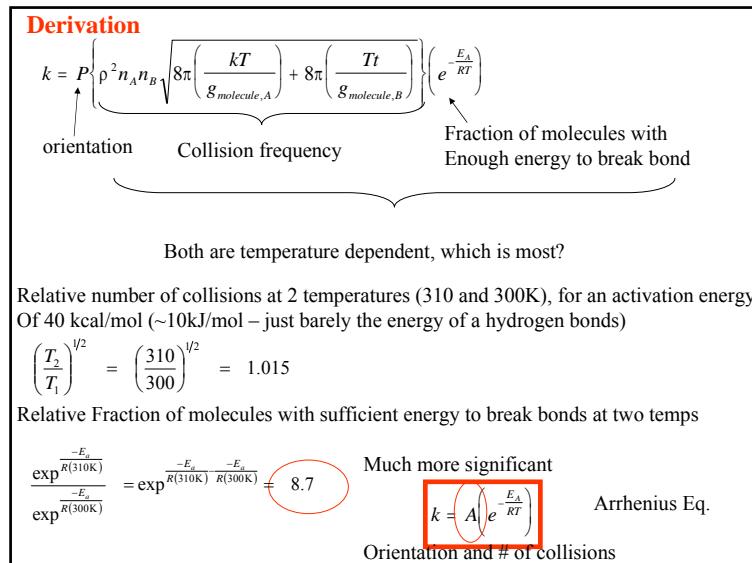
$$u_{rms} = \sqrt{\frac{3kT}{g_{molecule}}}$$

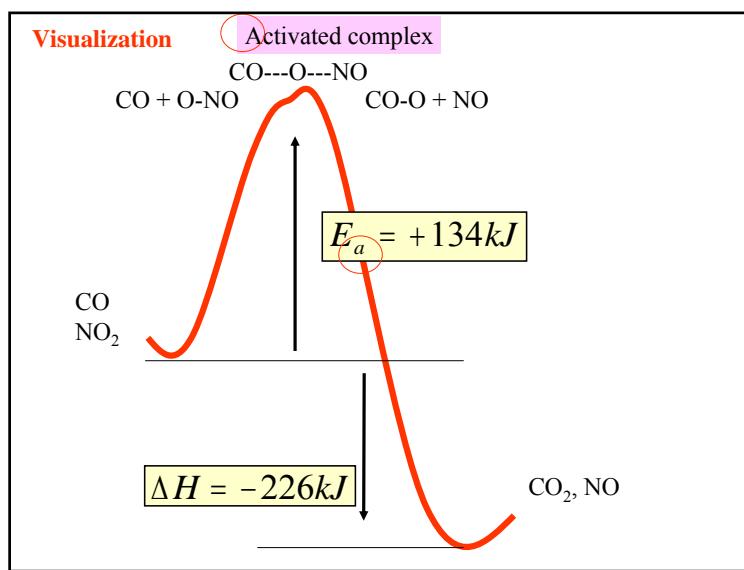
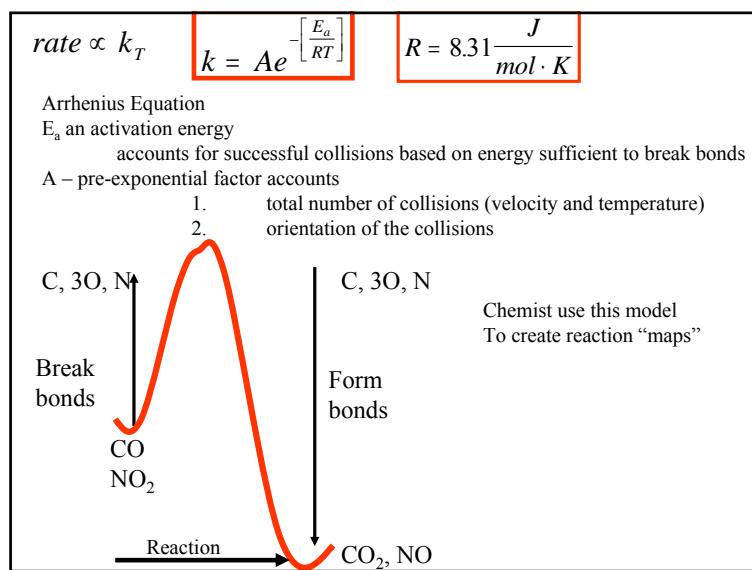

$$E_k = \frac{1}{2} m_{ass \text{ of molecule}} \left[\sqrt{\frac{3kT}{mass \text{ of molecule}}} \right]^2$$

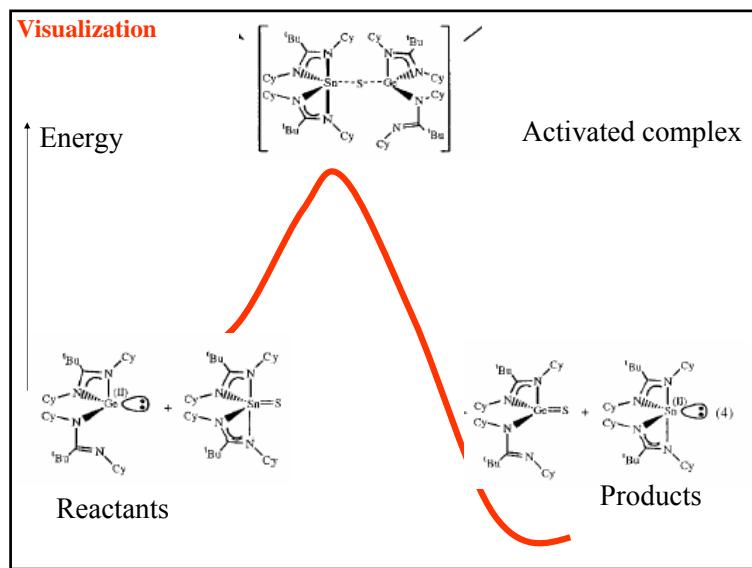
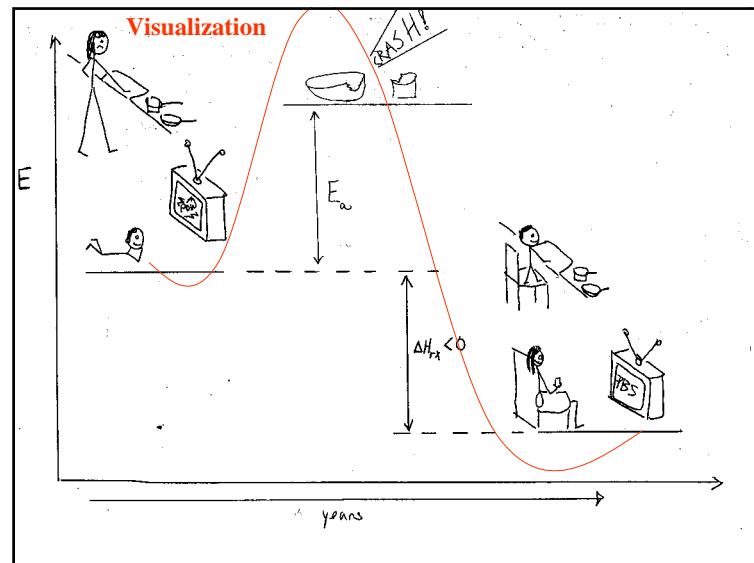
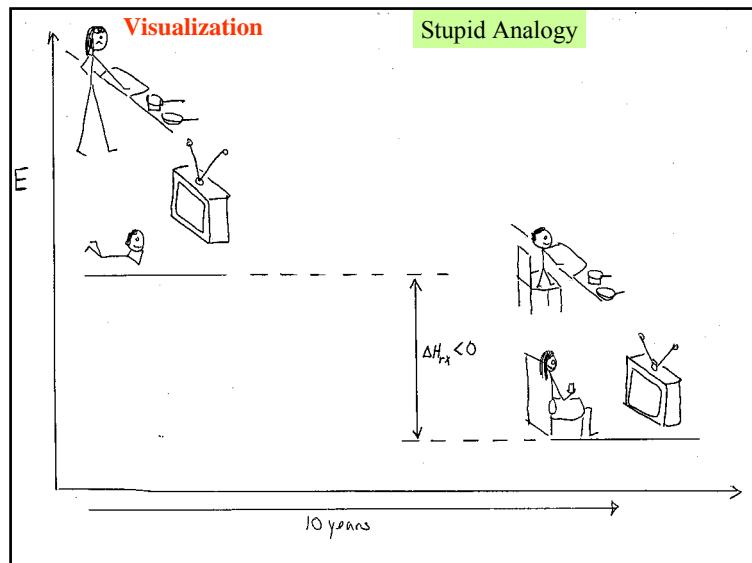
$$E_k = \left(\frac{1}{2} m_{ass \text{ of molecule}} \right) \left(\frac{3kT}{mass \text{ of molecule}} \right)$$

$$E_k = \left(\frac{3kT}{2} \right)$$

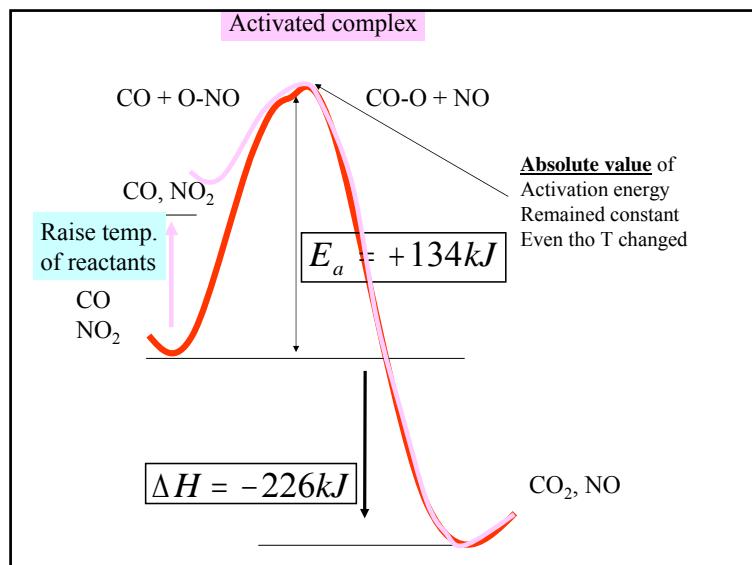
$$f(x) = e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$$


$$f(x) = e^{-\frac{E_{molecule}}{kT}} = e^{-\frac{E_{mole}}{RT}}$$



However, only a **fraction** of molecules at a given temperature have that average speed, and therefore, Average energy




If you assume a normal distribution for the "bell curve" you can calculate the fraction of molecules with an energy above the average value

Review


Fitch Rule G3: Science is Referential

ACTIVATION ENERGY

1. \equiv energy in to make rx go
2. $\equiv E_a$
3. Units = kJ
4. $E_a > 0$
5. E_a proportional rx rate
 - a) E_a small; rate large
 - b) Absolute value of E_a independent of T, []
hmmm, that doesn't seem right?

How could you calculate E_a ?

$$\ln k_1 + \frac{E_a}{RT_1} = \ln A = \ln k_2 + \frac{E_a}{RT_2}$$

$$k = Ae^{-\left[\frac{E_a}{RT}\right]}$$

$$\ln k_1 - \ln k_2 = \frac{E_a}{RT_2} - \frac{E_a}{RT_1}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln k_1 = \ln A - \frac{E_a}{RT_1}$$

$$\ln k_2 = \ln A - \frac{E_a}{RT_2}$$

Clausius-Clapeyron Equation for the kinetic model of gas vaporization from a liquid!!!!!!

$$\ln \left[\frac{P_2}{P_1} \right] = \left[\frac{-\Delta H_{\text{vaporization}}}{R} \right] \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$

$$R = 0.0821 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$$

$$R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$

$$R = 8.31 \times 10^3 \frac{\text{g} \cdot \text{m}^2}{\text{s}^2 \cdot \text{mol} \cdot \text{K}}$$

Activation Energy Example Calculation : The experimental rate constant for the reaction of iodide ion with methyl bromide is $7.70 \times 10^{-3} \text{ L/mol}\cdot\text{s}$ at 50°C and $4.25 \times 10^{-5} \text{ L/mol}\cdot\text{s}$ at 0°C . Calculate the activation energy and the pre-exponential factor.

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln [181] = \frac{E_a}{8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}} \left(\frac{1}{273 \text{ K}} - \frac{1}{323 \text{ K}} \right)$$

$$k = Ae^{-\left[\frac{E_a}{RT}\right]}$$

$$R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$

$$\ln \left[\frac{7.70 \times 10^{-3} \frac{\text{L}}{\text{mol} \cdot \text{s}}}{4.25 \times 10^{-5} \frac{\text{L}}{\text{mol} \cdot \text{s}}} \right] = \frac{E_a}{8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}} \left(\frac{1}{0 + 273 \text{ K}} - \frac{1}{50 + 273 \text{ K}} \right)$$

$76,200 \frac{\text{J}}{\text{mol}} = E_a$

Be careful, be very very careful

Activation Energy Example Calculation : The experimental rate constant for the reaction of iodide ion with methyl bromide is $7.70 \times 10^{-3} \text{ L/mol}\cdot\text{s}$ at 50°C and $4.25 \times 10^{-5} \text{ L/mol}\cdot\text{s}$ at 0°C . Calculate the activation energy and the pre-exponential factor.

$$k = Ae^{-\left[\frac{E_a}{RT}\right]}$$

$$R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$$

$$76,200 \frac{\text{J}}{\text{mol}} = E_a$$

$$7.70 \times 10^{-3} \frac{\text{L}}{\text{mol} \cdot \text{s}} = Ae^{-\left[\frac{76,200 \frac{\text{J}}{\text{mol}}}{\left(8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}\right)(323 \text{ K})}\right]}$$

$$\frac{7.70 \times 10^{-3} \frac{\text{L}}{\text{mol} \cdot \text{s}}}{4.685 \times 10^{-13}} = A$$

$$7.70 \times 10^{-3} \frac{\text{L}}{\text{mol} \cdot \text{s}} = Ae^{-[23.389]}$$

$$7.70 \times 10^{-3} \frac{\text{L}}{\text{mol} \cdot \text{s}} = A$$

$A = 1.64 \times 10^4 \frac{\text{L}}{\text{mol} \cdot \text{s}}$

This number represents orientation And collisions

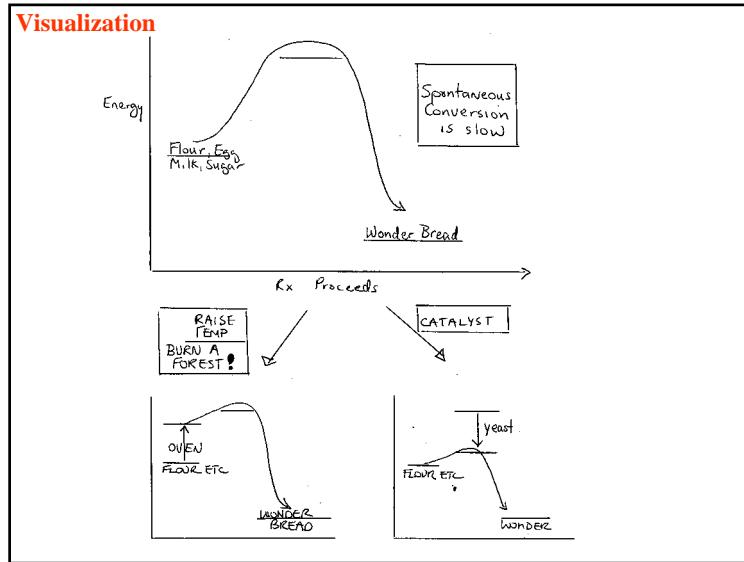
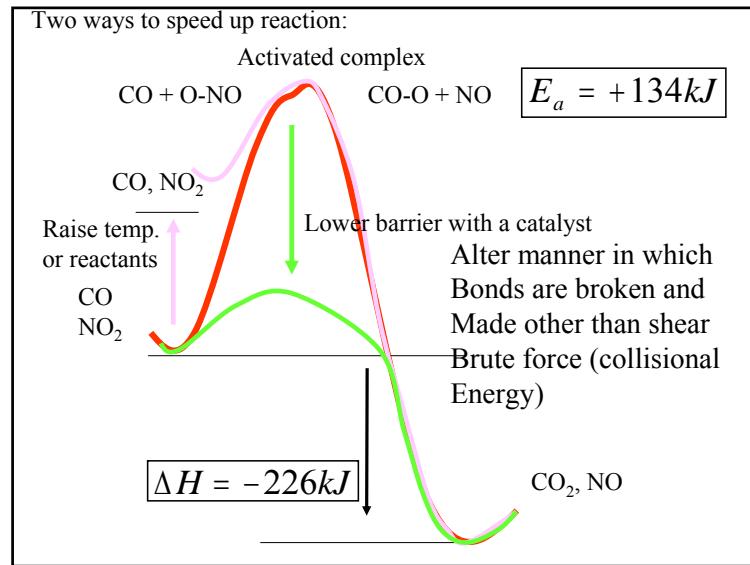
A students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14
Kinetics: Catalysis

CATALYSIS

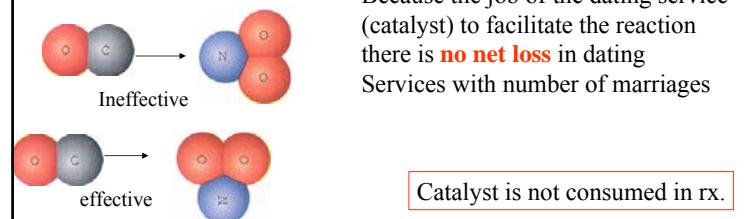


1. Want to make reaction go faster.

(Eat dinner at 5 instead of 10)

2. Two choices:

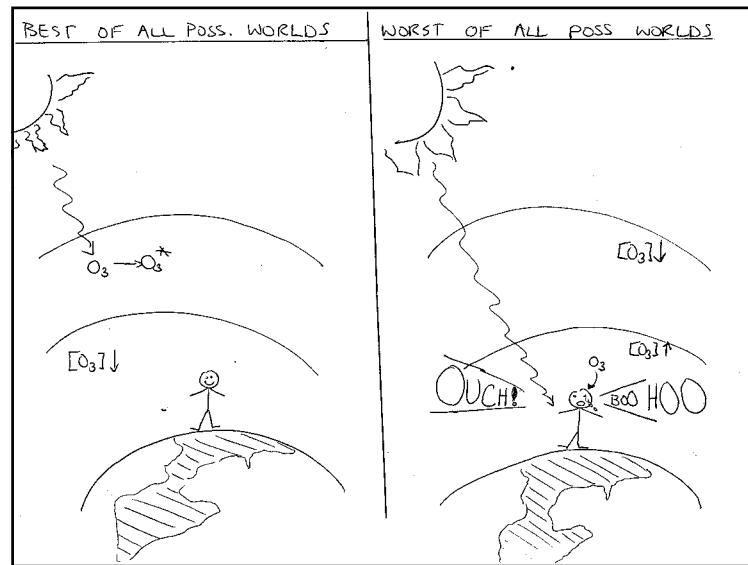
a) Raise energy of reactants close to E_a

b) Decrease E_a (CATALYSIS)

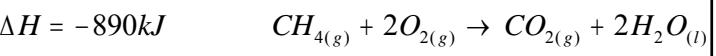


Catalysts work by:

Stupid Analogies

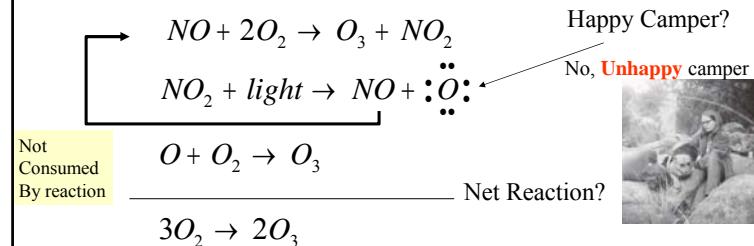

1. **Dating Service**: Bringing reactants together (increasing number of collisions, without requiring an increase in temp)
2. **Dating Service** tailored to specific populations ensuring proper orientation of reactants (increasing the number of effective collisions); also facilitates energy of bond making

Because the job of the dating service (catalyst) to facilitate the reaction there is **no net loss** in dating Services with number of marriages


Catalyst is not consumed in rx.

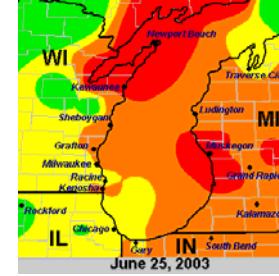
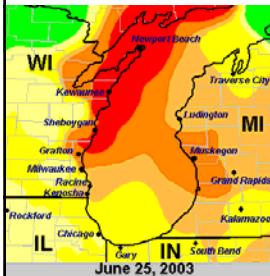
Example: smog, ozone, and catalytic converters

FLASHBACK

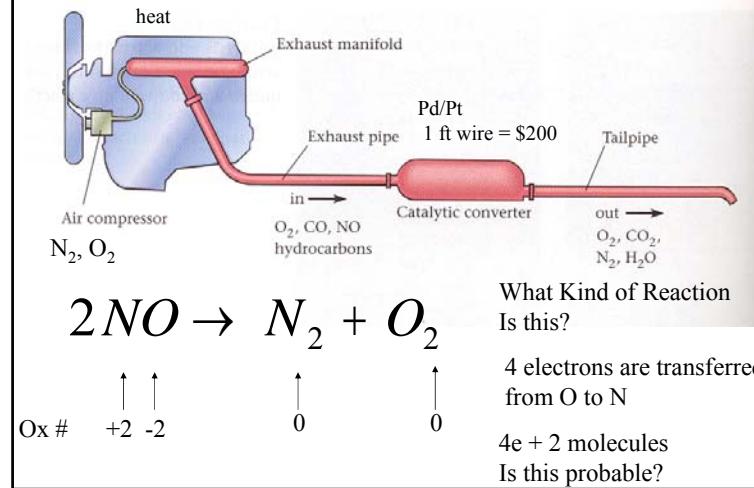

$$\Delta H = -890 \text{ kJ}$$

		Heat transferred from system to surroundings		"efficiency"	
		q	-890 kJ	w	+5 kJ
Bunsen burner	-885 kJ	-890 kJ	-665 kJ	-220 kJ	25%
Automobile Engine	-885 kJ	-890 kJ	-665 kJ	-220 kJ	25%

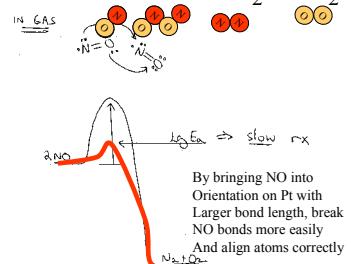
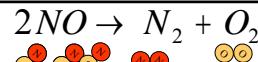
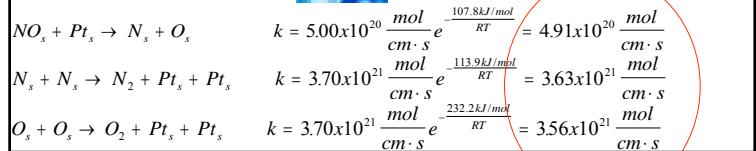
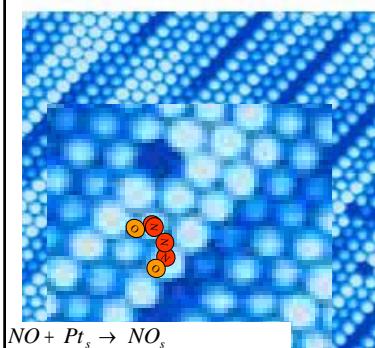
Lung/Eye Damage: Ozone excess in Lower Atmosphere

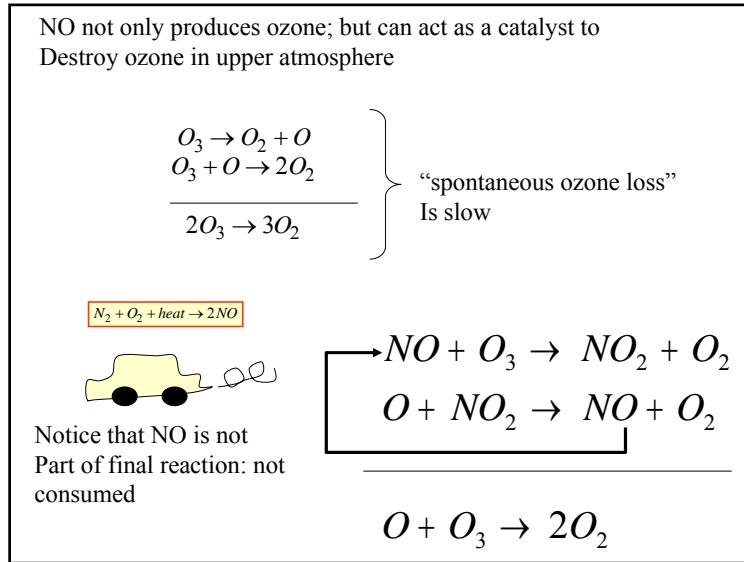
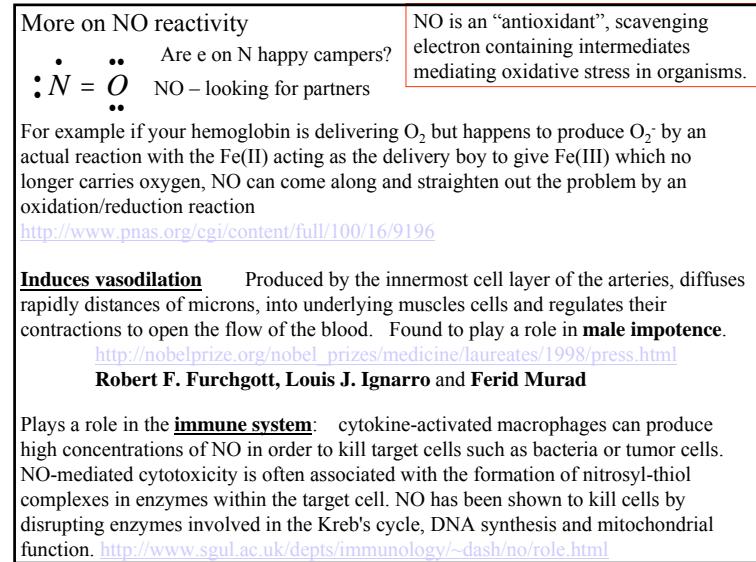
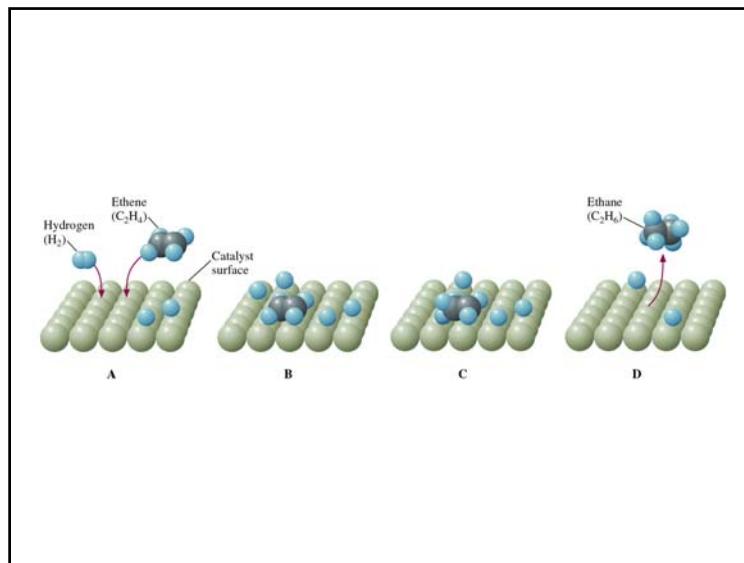
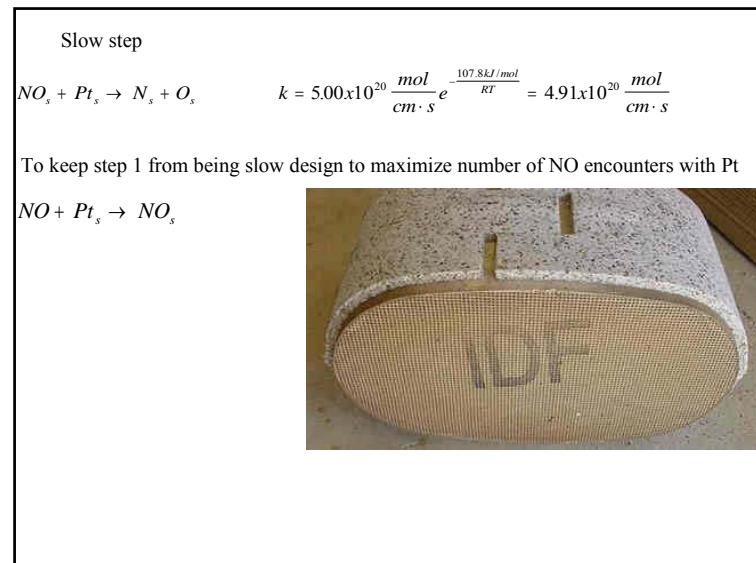



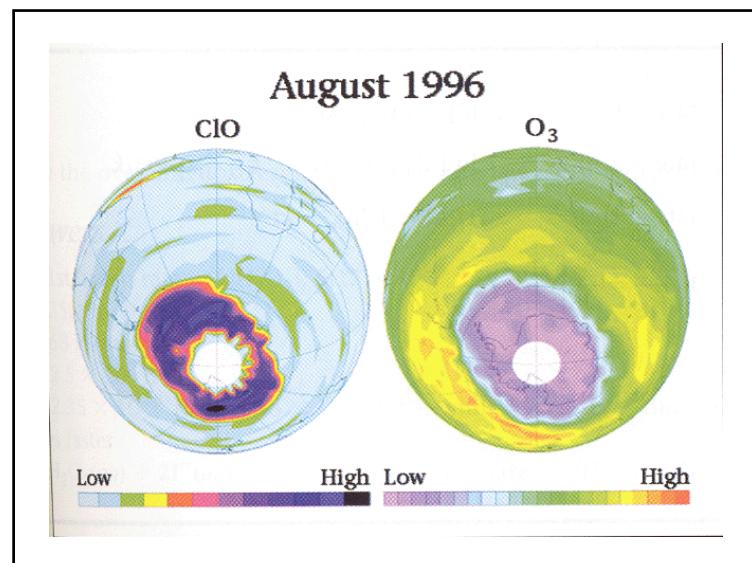
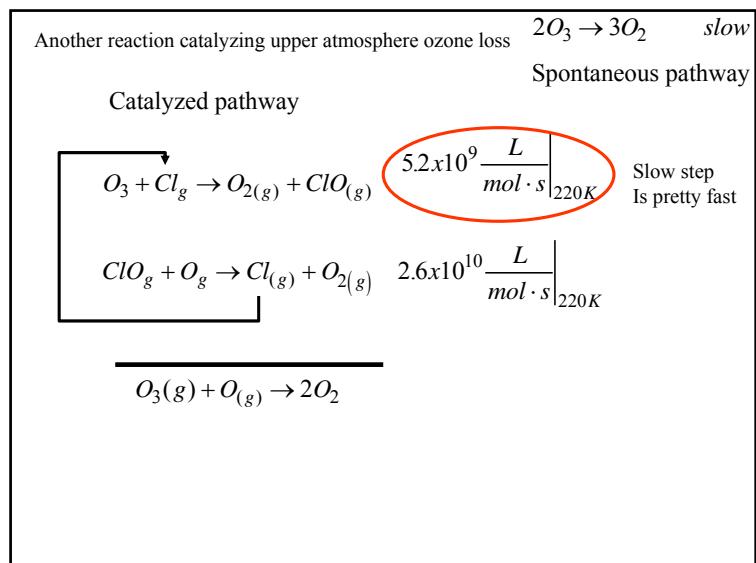
NO is a catalyst


Has an intermediate bond energy with oxygen
Allowing it to carry oxygen, and to release it

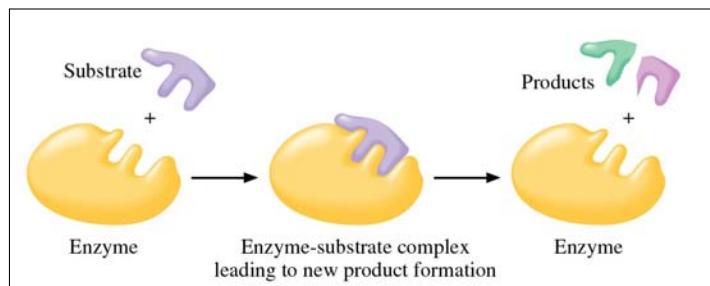
<http://www.epa.gov/airnow/showmaps.html?/airnow/2003/20030624/8p-super.gif>





Lower Atmosphere Ozone Concentrations for Lake Michigan
Red = unhealthy, >125 ppb

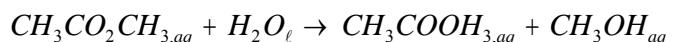




One solution: reduce NO from engine back to N₂

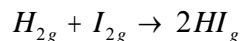



Scanning tunneling image of Pt surface

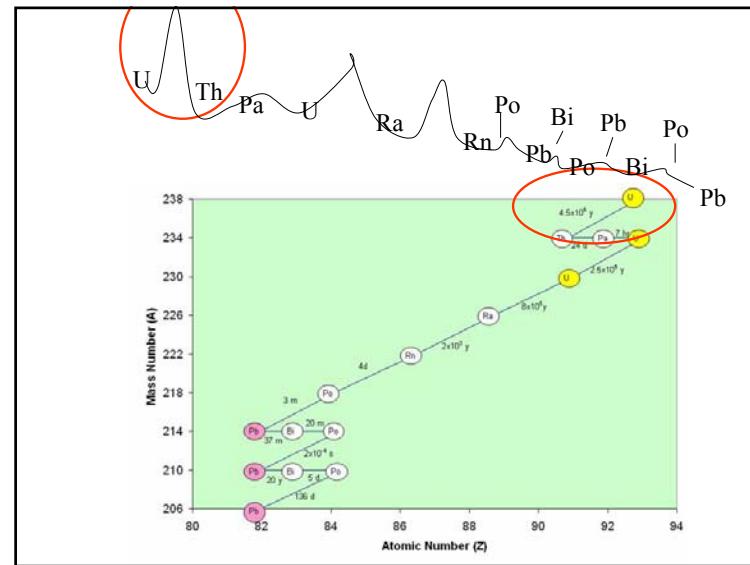
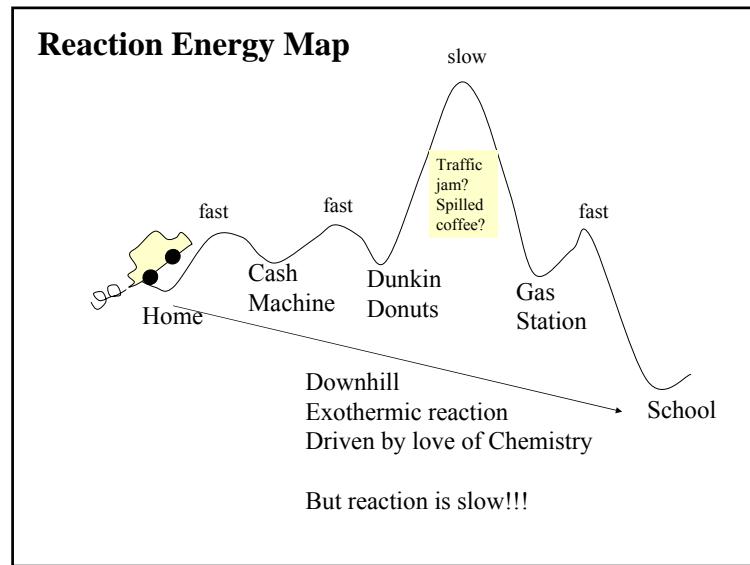
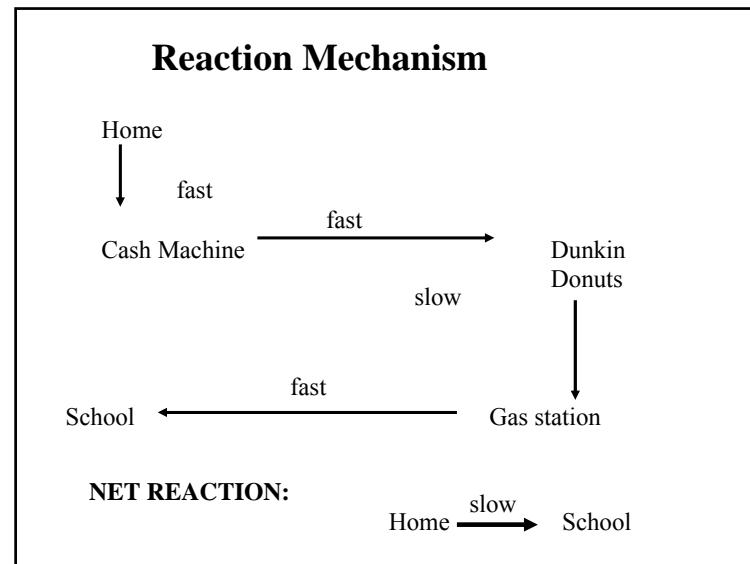


Slow ste

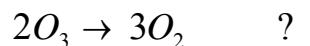
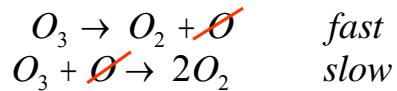

Enzyme action (lock-and-key model).


Enzymes are catalysts in biochemical reactions

Catalysis Example Problems




Which of the these reactions appear to involve a catalyst? In those cases where a catalyst is present, tell whether it is homogeneous or heterogeneous.

$$rate = k [CH_3CO_2CH_{3,aq}] [H_2O^+]$$

$$rate = [H_{2g}] [I_{2,g}]$$

Example: Ozone

Express the reaction rate for:

What is the rate expression?
What is the rate?

Wrong answer:

$$\cancel{rate} = k \cancel{[O_3]^2}$$

From the overall reaction

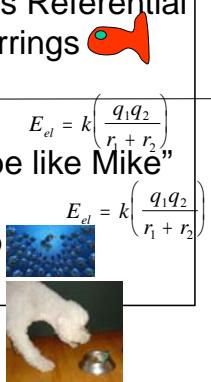
$$rate = k[O_3]^m[O]^n$$

From the slow step!!

Example Problem: Reaction Mechanism

Reaction	Rate
$2A + B \xrightarrow{\leftarrow} C$	fast
$C \xrightarrow{\leftarrow} D$	fast
$D \rightarrow 2E$	slow
$2E + F \xrightarrow{\leftarrow} G$	fast
$2A + B + F \rightarrow G$	slow
	Net reaction

From net reaction
WE PREDICT


$$rate = k[A]^2[B][F]$$

WE OBSERVE

rate = $k[D]$ IS THIS A PROBLEM?

FITCH Rules

General	<p>G1: Suzuki is Success</p> <p>G2. Slow me down</p> <p>G3. Scientific Knowledge is Referential</p> <p>G4. Watch out for Red Herrings </p> <p><u>G5. Chemists are Lazy</u></p> <p>C1. It's all about charge</p> <p>C2. Everybody wants to "be like Mike"</p> <p>C3. Size Matters</p> <p>C4. Still Waters Run Deep</p> <p>C5. Alpha Dogs eat first</p>
Chemistry	$E_{el} = k \left(\frac{q_1 q_2}{r_1 + r_2} \right)$ $E_{el} = k \left(\frac{q_1 q_2}{r_1 + r_2} \right)$

“A” students work
(without solutions manual)
~ 10 problems/night.

Dr. Alanah Fitch
Flanner Hall 402
508-3119
afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #14

Kinetics

End